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5.1 MECHANICAL PROPERTIES OF MATERIALS
by John Symonds, Expanded by Staff
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STRESS-STRAIN DIAGRAMS

The Stress-Strain Curve The engineering tensile stress-strain curve
is obtained by static loading of a standard specimen, that is, by applying
the load slowly enough that all parts of the specimen are in equilibrium
at any instant . The curve is usually obtained by controlling the loading
rate in the tensile machine. ASTM Standards require a loading rate not
exceeding 100,000 lb/in2 (70 kgf/mm2)/min. An alternate method of
obtaining the curve is to specify the strain rate as the independent vari-
able, in which case the loading rate is continuously adjusted to maintain
the required strain rate. A strain rate of 0.05 in/in/(min) is commonly
used. It is measured usually by an extensometer attached to the gage
length of the specimen. Figure 5.1.1 shows several stress-strain curves.

Fig. 5.1.1. Comparative stress-strain diagrams. (1) Soft brass; (2) low carbon
steel; (3) hard bronze; (4) cold rolled steel; (5) medium carbon steel, annealed; (6)
medium carbon steel, heat treated.

For most engineering materials, the curve will have an initial linear
elastic region (Fig. 5.1.2) in which deformation is reversible and time-
independent . The slope in this region is Young’s modulus E. The propor-
tional elastic limit (PEL) is the point where the curve starts to deviate
from a straight line. The elastic limit (frequently indistinguishable from
PEL) is the point on the curve beyond which plastic deformation is
present after release of the load. If the stress is increased further, the
stress-strain curve departs more and more from the straight line. Un-
loading the specimen at point X (Fig. 5.1.2), the portion XX9 is linear
and is essentially parallel to the original line OX99. The horizontal dis-
tance OX9 is called the permanent set corresponding to the stress at X.
This is the basis for the construction of the arbitrary yield strength. To
determine the yield strength, a straight line XX9 is drawn parallel to the
initial elastic line OX99 but displaced from it by an arbitrary value of
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larly at high temperatures. Also at high temperatures, a small amount of
time-dependent reversible strain may be detectable, indicative of anelas-
tic behavior.

Fig. 5.1.2. General stress-strain diagram.

The ultimate tensile strength (UTS) is the maximum load sustained by
the specimen divided by the original specimen cross-sectional area. The
percent elongation at failure is the plastic extension of the specimen at
failure expressed as (the change in original gage length 3 100) divided
by the original gage length. This extension is the sum of the uniform and
nonuniform elongations. The uniform elongation is that which occurs
prior to the UTS. It has an unequivocal significance, being associated
with uniaxial stress, whereas the nonuniform elongation which occurs
during localized extension (necking) is associated with triaxial stress.
The nonuniform elongation will depend on geometry, particularly the
ratio of specimen gage length L0 to diameter D or square root of cross-
sectional area A. ASTM Standards specify test-specimen geometry for a
number of specimen sizes. The ratio L0 /√A is maintained at 4.5 for flat-
and round-cross-section specimens. The original gage length should
always be stated in reporting elongation values.

The specimen percent reduction in area (RA) is the contraction in
cross-sectional area at the fracture expressed as a percentage of the
original area. It is obtained by measurement of the cross section of the
broken specimen at the fracture location. The RA along with the load at
fracture can be used to obtain the fracture stress, that is, fracture load
divided by cross-sectional area at the fracture. See Table 5.1.1.

The type of fracture in tension gives some indications of the quality
of the material, but this is considerably affected by the testing tempera-
ture, speed of testing, the shape and size of the test piece, and other
conditions. Contraction is greatest in tough and ductile materials and
least in brittle materials. In general, fractures are either of the shear or of
the separation (loss of cohesion) type. Flat tensile specimens of ductile
metals often show shear failures if the ratio of width to thickness is
greater than 6 : 1. A completely shear-type failure may terminate in a
chisel edge, for a flat specimen, or a point rupture, for a round specimen.
Separation failures occur in brittle materials, such as certain cast irons.
Combinations of both shear and separation failures are common on
round specimens of ductile metal. Failure often starts at the axis in a
necked region and produces a relatively flat area which grows until the
material shears along a cone-shaped surface at the outside of the speci-
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Table 5.1.1 Typical Mechanical Properties at Room Temperature
(Based on ordinary stress-strain values)

Tensile Yield Ultimate
strength, strength, elongation, Reduction Brinell

Metal 1,000 lb/in2 1,000 lb/in2 % of area, % no.

Cast iron 18–60 8–40 0 0 100–300
Wrought iron 45–55 25–35 35–25 55–30 100
Commercially pure iron, annealed 42 19 48 85 70

Hot-rolled 48 30 30 75 90
Cold-rolled 100 95 200

Structural steel, ordinary 50–65 30–40 40–30 120
Low-alloy, high-strength 65–90 40–80 30–15 70–40 150

Steel, SAE 1300, annealed 70 40 26 70 150
Quenched, drawn 1,300°F 100 80 24 65 200
Drawn 1,000°F 130 110 20 60 260
Drawn 700°F 200 180 14 45 400
Drawn 400°F 240 210 10 30 480

Steel, SAE 4340, annealed 80 45 25 70 170
Quenched, drawn 1,300°F 130 110 20 60 270
Drawn 1,000°F 190 170 14 50 395
Drawn 700°F 240 215 12 48 480
Drawn 400°F 290 260 10 44 580

Cold-rolled steel, SAE 1112 84 76 18 45 160
Stainless steel, 18-S 85–95 30–35 60–55 75–65 145–160
Steel castings, heat-treated 60–125 30–90 33–14 65–20 120–250
Aluminum, pure, rolled 13–24 5–21 35–5 23–44
Aluminum-copper alloys, cast 19–23 12–16 4–0 50–80
Wrought , heat-treated 30–60 10–50 33–15 50–120
Aluminum die castings 30 2
Aluminum alloy 17ST 56 34 26 39 100
Aluminum alloy 51ST 48 40 20 35 105
Copper, annealed 32 5 58 73 45
Copper, hard-drawn 68 60 4 55 100
Brasses, various 40–120 8–80 60–3 50–170
Phosphor bronze 40–130 55–5 50–200
Tobin bronze, rolled 63 41 40 52 120
Magnesium alloys, various 21–45 11–30 17–0.5 47–78
Monel 400, Ni-Cu alloy 79 30 48 75 125
Molybdenum, rolled 100 75 30 250
Silver, cast , annealed 18 8 54 27
Titanium 6–4 alloy, annealed 130 120 10 25 352
Ductile iron, grade 80-55-06 80 55 6 225–255

NOTE: Compressive strength of cast iron, 80,000 to 150,000 lb/in2.
Compressive yield strength of all metals, except those cold-worked 5 tensile yield strength.
Stress 1,000 lb/in2 3 6.894 5 stress, MN/m2.

men, resulting in what is known as the cup-and-cone fracture. Double
cup-and-cone and rosette fractures sometimes occur. Several types of
tensile fractures are shown in Fig. 5.1.3.

Annealed or hot-rolled mild steels generally exhibit a yield point (see
Fig. 5.1.4). Here, in a constant strain-rate test , a large increment of
extension occurs under constant load at the elastic limit or at a stress just
below the elastic limit . In the latter event the stress drops suddenly from

to test temperature, test strain rate, and the characteristics of the tensile
machine employed.

The plastic behavior in a uniaxial tensile test can be represented as the
true stress-strain curve. The true stress s is based on the instantaneous

Copyright (C) 1999 by The McGraw-Hill Companies, Inc.  All rights reserved.  Use of
this product is subject to the terms of its License Agreement.   Click here to view.
the upper yield point to the lower yield point. Subsequent to the drop, the
yield-point extension occurs at constant stress, followed by a rise to the
UTS. Plastic flow during the yield-point extension is discontinuous;

Fig. 5.1.3. Typical metal fractures in tension.

successive zones of plastic deformation, known as Luder’s bands or
stretcher strains, appear until the entire specimen gage length has been
uniformly deformed at the end of the yield-point extension. This behav-
ior causes a banded or stepped appearance on the metal surface. The
exact form of the stress-strain curve for this class of material is sensitive
 Fig. 5.1.4. Yielding of annealed steel.
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cross section A, so that s 5 load/A. The instantaneous true strain incre-
ment is 2 dA/A, or dL/L prior to necking. Total true strain « is

EA

A0

2
dA

A
5 lnSA0

AD
or ln (L/L0 ) prior to necking. The true stress-strain curve or flow curve
obtained has the typical form shown in Fig. 5.1.5. In the part of the test

section. Methods of constructing the true stress-strain curve are de-
scribed in the technical literature. In the range between initial
yielding and the neighborhood of the maximum load point the relation-
ship between plastic strain «p and true stress often approximates

s 5 k«p
n

where k is the strength coefficient and n is the work-hardening exponent.

E
du
ast
ou
du
00,000 1,000,000 1,000,000 Poisson’s
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subsequent to the maximum load point (UTS), when necking occurs,
the true strain of interest is that which occurs in an infinitesimal length
at the region of minimum cross section. True strain for this element can
still be expressed as ln (A0 /A), where A refers to the minimum cross

Fig. 5.1.5. True stress-strain curve for 20°C annealed mild steel.

Table 5.1.3 Elastic Constants of Metals
(Mostly from tests of R. W. Vose)

Mo
el
(Y
mo
1,0
Metal lb/

Cast steel 28.5
Cold-rolled steel 29.5
Stainless steel 18–8 27.6
All other steels, including high-carbon, heat-treated 28.6–
Cast iron 13.5–
Malleable iron 23.6
Copper 15.6
Brass, 70–30 15.9
Cast brass 14.5
Tobin bronze 13.8
Phosphor bronze 15.9
Aluminum alloys, various 9.9–
Monel metal 25.0
Inconel 31
Z-nickel 30
Beryllium copper 17
Elektron (magnesium alloy) 6.3
Titanium (99.0 Ti), annealed bar 15–
Zirconium, crystal bar 11–
Molybdenum, arc-cast 48–
For a material which shows a yield point the relationship applies only to
the rising part of the curve beyond the lower yield. It can be shown that
at the maximum load point the slope of the true stress-strain curve
equals the true stress, from which it can be deduced that for a material
obeying the above exponential relationship between «p and n, «p 5 n at
the maximum load point . The exponent strongly influences the spread
between YS and UTS on the engineering stress-strain curve. Values of n
and k for some materials are shown in Table 5.1.2. A point on the flow
curve indentifies the flow stress corresponding to a certain strain, that is,
the stress required to bring about this amount of plastic deformation.
The concept of true strain is useful for accurately describing large
amounts of plastic deformation. The linear strain definition (L 2 L0 )/L0

fails to correct for the continuously changing gage length, which leads
to an increasing error as deformation proceeds.

During extension of a specimen under tension, the change in the
specimen cross-sectional area is related to the elongation by Poisson’s
ratio m, which is the ratio of strain in a transverse direction to that in the
longitudinal direction. Values of m for the elastic region are shown in
Table 5.1.3. For plastic strain it is approximately 0.5.

Table 5.1.2 Room-Temperature Plastic-Flow Constants for a
Number of Metals

k, 1,000 in2

Material Condition (MN/m2) n

0.40% C steel Quenched and tempered at
400°F (478K)

416 (2,860) 0.088

0.05% C steel Annealed and temper-rolled 72 (49.6) 0.235
2024 aluminum Precipitation-hardened 100 (689) 0.16
2024 aluminum Annealed 49 (338) 0.21
Copper Annealed 46.4 (319) 0.54
70–30 brass Annealed 130 (895) 0.49

SOURCE: Reproduced by permission from ‘‘Properties of Metals in Materials Engineering,’’
ASM, 1949.

G K m
lus of Modulus of
icity rigidity
ng’s (shearing Bulk
lus). modulus). modulus.
in2 lb/in2 lb/in2 ratio

11.3 20.2 0.265
11.5 23.1 0.287
10.6 23.6 0.305

30.0 11.0–11.9 22.6–24.0 0.283–0.292
21.0 5.2–8.2 8.4–15.5 0.211–0.299

9.3 17.2 0.271
5.8 17.9 0.355
6.0 15.7 0.331
5.3 16.8 0.357
5.1 16.3 0.359
5.9 17.8 0.350

10.3 3.7–3.9 9.9–10.2 0.330–0.334
9.5 22.5 0.315

11 0.27–0.38
11 6 0.36
7 6 0.21
2.5 4.8 0.281

16 6.5 0.34
14
52
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The general effect of increased strain rate is to increase the resistance
to plastic deformation and thus to raise the flow curve. Decreasing test
temperature also raises the flow curve. The effect of strain rate is ex-
pressed as strain-rate sensitivity m. Its value can be measured in the
tension test if the strain rate is suddenly increased by a small increment
during the plastic extension. The flow stress will then jump to a higher

I

D

Tension or compression

2r

d/2

d/2

IV 1

1

Bending

D d

r

r
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value. The strain-rate sensitivity is the ratio of incremental changes of
log s and log ~«

m 5Sd log s

d log ~«
D

«

For most engineering materials at room temperature the strain rate sen-
sitivity is of the order of 0.01. The effect becomes more significant at
elevated temperatures, with values ranging to 0.2 and sometimes higher.

Compression Testing The compressive stress-strain curve is simi-
lar to the tensile stress-strain curve up to the yield strength. Thereafter,
the progressively increasing specimen cross section causes the com-
pressive stress-strain curve to diverge from the tensile curve. Some
ductile metals will not fail in the compression test . Complex behavior
occurs when the direction of stressing is changed, because of the Baus-
chinger effect, which can be described as follows: If a specimen is first
plastically strained in tension, its yield stress in compression is reduced
and vice versa.

Combined Stresses This refers to the situation in which stresses
are present on each of the faces of a cubic element of the material. For a
given cube orientation the applied stresses may include shear stresses
over the cube faces as well as stresses normal to them. By a suitable
rotation of axes the problem can be simplified: applied stresses on the
new cubic element are equivalent to three mutually orthogonal principal
stresses s1 , s2 , s3 alone, each acting normal to a cube face. Combined
stress behavior in the elastic range is described in Sec. 5.2, Mechanics
of Materials.

Prediction of the conditions under which plastic yielding will occur
under combined stresses can be made with the help of several empirical
theories. In the maximum-shear-stress theory the criterion for yielding is
that yielding will occur when

s1 2 s3 5 sys

in which s1 and s3 are the largest and smallest principal stresses, re-
spectively, and sys is the uniaxial tensile yield strength. This is the
simplest theory for predicting yielding under combined stresses. A more
accurate prediction can be made by the distortion-energy theory, accord-
ing to which the criterion is

(s1 2 s2)2 1 (s2 2 s3)2 1 (s2 2 s1)2 5 2(sys )2

Stress-strain curves in the plastic region for combined stress loading can
be constructed. However, a particular stress state does not determine a
unique strain value. The latter will depend on the stress-state path which
is followed.

Plane strain is a condition where strain is confined to two dimensions.
There is generally stress in the third direction, but because of mechani-
cal constraints, strain in this dimension is prevented. Plane strain occurs
in certain metalworking operations. It can also occur in the neighbor-
hood of a crack tip in a tensile loaded member if the member is suffi-
ciently thick. The material at the crack tip is then in triaxial tension,
which condition promotes brittle fracture. On the other hand, ductility is
enhanced and fracture is suppressed by triaxial compression.

Stress Concentration In a structure or machine part having a notch
or any abrupt change in cross section, the maximum stress will occur at
this location and will be greater than the stress calculated by elementary
formulas based upon simplified assumptions as to the stress distribu-
tion. The ratio of this maximum stress to the nominal stress (calculated
by the elementary formulas) is the stress-concentration factor Kt . This is
a constant for the particular geometry and is independent of the mate-
rial, provided it is isotropic. The stress-concentration factor may be
determined experimentally or, in some cases, theoretically from the
mathematical theory of elasticity. The factors shown in Figs. 5.1.6 to
5.1.13 were determined from both photoelastic tests and the theory of
elasticity. Stress concentration will cause failure of brittle materials if
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the concentrated stress is larger than the ultimate strength of the mate-
rial. In ductile materials, concentrated stresses higher than the yield
strength will generally cause local plastic deformation and redistribu-
tion of stresses (rendering them more uniform). On the other hand, even
with ductile materials areas of stress concentration are possible sites for
fatigue if the component is cyclically loaded.
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Fig. 5.1.9. Flat plate with grooves, in bending.
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ig. 5.1.11. Flat plate with angular notch, in tension or bending.
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D d
h

1
r transition temperature of a material selected for a particular application

is suitably matched to its intended use temperature. The DBT can be
detected by plotting certain measurements from tensile or impact tests
against temperature. Usually the transition to brittle behavior is com-
plex, being neither fully ductile nor fully brittle. The range may extend
over 200°F (110 K) interval. The nil-ductility temperature (NDT), deter-
mined by the drop weight test (see ASTM Standards), is an important
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FRACTURE AT LOW STRESSES

Materials under tension sometimes fail by rapid fracture at stresses
much below their strength level as determined in tests on carefully
prepared specimens. These brittle, unstable, or catastrophic failures origi-
nate at preexisting stress-concentrating flaws which may be inherent in
a material.

The transition-temperature approach is often used to ensure fracture-
safe design in structural-grade steels. These materials exhibit a charac-
teristic temperature, known as the ductile brittle transition (DBT) tem-
perature, below which they are susceptible to brittle fracture. The tran-
sition-temperature approach to fracture-safe design ensures that the
Fig. 5.1.14. CVN transition curves. (Data from Westinghouse R & D L
reference point in the transition range. When NDT for a particular steel
is known, temperature-stress combinations can be specified which de-
fine the limiting conditions under which catastrophic fracture can occur.

In the Charpy V-notch (CVN) impact test , a notched-bar specimen
(Fig. 5.1.26) is used which is loaded in bending (see ASTM Standards).
The energy absorbed from a swinging pendulum in fracturing the speci-
men is measured. The pendulum strikes the specimen at 16 to 19 ft
(4.88 to 5.80 m)/s so that the specimen deformation associated with
fracture occurs at a rapid strain rate. This ensures a conservative mea-
sure of toughness, since in some materials, toughness is reduced by high
strain rates. A CVN impact energy vs. temperature curve is shown in
Fig. 5.1.14, which also shows the transitions as given by percent brittle
fracture and by percent lateral expansion. The CVN energy has no
analytical significance. The test is useful mainly as a guide to the frac-
ture behavior of a material for which an empirical correlation has been
established between impact energy and some rigorous fracture criterion.
For a particular grade of steel the CVN curve can be correlated with
NDT. (See ASME Boiler and Pressure Vessel Code.)

Fracture Mechanics This analytical method is used for ultra-high-
strength alloys, transition-temperature materials below the DBT tem-
perature, and some low-strength materials in heavy section thickness.

Fracture mechanics theory deals with crack extension where plastic
effects are negligible or confined to a small region around the crack tip.
The present discussion is concerned with a through-thickness crack in a
tension-loaded plate (Fig. 5.1.15) which is large enough so that the
crack-tip stress field is not affected by the plate edges. Fracture me-
chanics theory states that unstable crack extension occurs when the
work required for an increment of crack extension, namely, surface
energy and energy consumed in local plastic deformation, is exceeded
by the elastic-strain energy released at the crack tip. The elastic-stress
ab.)
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field surrounding one of the crack tips in Fig. 5.1.15 is characterized by
the stress intensity KI, which has units of (lb √in) /in2 or (N√m) /m2. It is
a function of applied nominal stress s, crack half-length a, and a geom-
etry factor Q:

K 2
l 5 Qs2pa (5.1.1)

Table 5.1.4 Room-Temperature Klc Values on High-Strength
Materials*

0.2% YS, 1,000 in2 Klc , 1,000 in2

Material (MN/m2) √in (MN m1/2/m2)

18% Ni maraging steel 300 (2,060) 46 (50.7)
18% Ni maraging steel 270 (1,850) 71 (78)
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for the situation of Fig. 5.1.15. For a particular material it is found that
as KI is increased, a value Kc is reached at which unstable crack propa-

Fig. 5.1.15. Through-thickness crack geometry.

gation occurs. Kc depends on plate thickness B, as shown in Fig. 5.1.16.
It attains a constant value when B is great enough to provide plane-strain
conditions at the crack tip. The low plateau value of Kc is an important
material property known as the plane-strain critical stress intensity or
fracture toughness KIc . Values for a number of materials are shown in
Table 5.1.4. They are influenced strongly by processing and small
changes in composition, so that the values shown are not necessarily
typical. KIc can be used in the critical form of Eq. (5.1.1):

(KIc )2 5 Qs2pacr (5.1.2)

to predict failure stress when a maximum flaw size in the material is
known or to determine maximum allowable flaw size when the stress is
set . The predictions will be accurate so long as plate thickness B satis-
fies the plane-strain criterion: B $ 2.5(KIc/sys )2. They will be conserva-
tive if a plane-strain condition does not exist . A big advantage of the
fracture mechanics approach is that stress intensity can be calculated by
equations analogous to (5.1.1) for a wide variety of geometries, types of

Fig. 5.1.16. Dependence of Kc and fracture appearance (in terms of percentage
of square fracture) on thickness of plate specimens. Based on data for aluminum
7075-T6. (From Scrawly and Brown, STP-381, ASTM.)
8% Ni maraging steel 198 (1,360) 87 (96)
itanium 6-4 alloy 152 (1,022) 39 (43)
itanium 6-4 alloy 140 (960) 75 (82.5)
luminum alloy 7075-T6 75 (516) 26 (28.6)
luminum alloy 7075-T6 64 (440) 30 (33)

* Determined at Westinghouse Research Laboratories.

rack, and loadings (Paris and Sih, ‘‘Stress Analysis of Cracks,’’ STP-
81, ASTM, 1965). Failure occurs in all cases when Kt reaches KIc .
racture mechanics also provides a framework for predicting the occur-
ence of stress-corrosion cracking by using Eq. (5.1.2) with KIc replaced
y KIscc , which is the material parameter denoting resistance to stress-
orrosion-crack propagation in a particular medium.

Two standard test specimens for KIc determination are specified in
STM standards, which also detail specimen preparation and test pro-

edure. Recent developments in fracture mechanics permit treatment of
rack propagation in the ductile regime. (See ‘‘Elastic-Plastic Frac-
ure,’’ ASTM.)

ATIGUE

atigue is generally understood as the gradual deterioration of a mate-
ial which is subjected to repeated loads. In fatigue testing, a specimen
s subjected to periodically varying constant-amplitude stresses by
eans of mechanical or magnetic devices. The applied stresses may

lternate between equal positive and negative values, from zero to max-
mum positive or negative values, or between unequal positive and
egative values. The most common loading is alternate tension and
ompression of equal numerical values obtained by rotating a smooth
ylindrical specimen while under a bending load. A series of fatigue
ests are made on a number of specimens of the material at different
tress levels. The stress endured is then plotted against the number of
ycles sustained. By choosing lower and lower stresses, a value may be
ound which will not produce failure, regardless of the number of ap-
lied cycles. This stress value is called the fatigue limit. The diagram is
alled the stress-cycle diagram or S-N diagram. Instead of recording the
ata on cartesian coordinates, either stress is plotted vs. the logarithm of
he number of cycles (Fig. 5.1.17) or both stress and cycles are plotted to
ogarithmic scales. Both diagrams show a relatively sharp bend in the
urve near the fatigue limit for ferrous metals. The fatigue limit may be
stablished for most steels between 2 and 10 million cycles. Nonferrous
etals usually show no clearly defined fatigue limit. The S-N curves in

hese cases indicate a continuous decrease in stress values to several
undred million cycles, and both the stress value and the number of
ycles sustained should be reported. See Table 5.1.5.

The mean stress (the average of the maximum and minimum stress
alues for a cycle) has a pronounced influence on the stress range (the
lgebraic difference between the maximum and minimum stress
alues). Several empirical formulas and graphical methods such as the
‘modified Goodman diagram’’ have been developed to show the influ-
nce of the mean stress on the stress range for failure. A simple but
onservative approach (see Soderberg, Working Stresses, Jour. Appl.
ech., 2, Sept . 1935) is to plot the variable stress Sv (one-half the stress

ange) as ordinate vs. the mean stress Sm as abscissa (Fig. 5.1.18). At
ero mean stress, the ordinate is the fatigue limit under completely
eversed stress. Yielding will occur if the mean stress exceeds the yield
tress So , and this establishes the extreme right-hand point of the dia-
ram. A straight line is drawn between these two points. The coordi-
ates of any other point along this line are values of Sm and Sv which
ay produce failure.
Surface defects, such as roughness or scratches, and notches or
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Accordingly, the pragmatic approach to arrive at a solution to a design
problem often takes a conservative route and sets q 5 1. The exact
material properties at play which are responsible for notch sensitivity
are not clear.

Further, notch sensitivity seems to be higher, and ordinary fatigue
strength lower in large specimens, necessitating full-scale tests in many
cases (see Peterson, Stress Concentration Phenomena in Fatigue of

ers
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Fig. 5.1.17. The S-N diagrams from fatigue tests. (1) 1.20% C steel, quenched
and drawn at 860°F (460°C); (2) alloy structural steel; (3) SAE 1050, quenched
and drawn at 1,200°F (649°C); (4) SAE 4130, normalized and annealed; (5) ordi-
nary structural steel; (6) Duralumin; (7) copper, annealed; (8) cast iron (reversed
bending).

shoulders all reduce the fatigue strength of a part . With a notch of
prescribed geometric form and known concentration factor, the reduc-
tion in strength is appreciably less than would be called for by the
concentration factor itself, but the various metals differ widely in their
susceptibility to the effect of roughness and concentrations, or notch
sensitivity.

For a given material subjected to a prescribed state of stress and type
of loading, notch sensitivity can be viewed as the ability of that material
to resist the concentration of stress incidental to the presence of a notch.
Alternately, notch sensitivity can be taken as a measure of the degree to
which the geometric stress concentration factor is reduced. An attempt
is made to rationalize notch sensitivity through the equation q 5 (Kf 2
1)/(K 2 1), where q is the notch sensitivity, K is the geometric stress
concentration factor (from data similar to those in Figs. 5.1.5 to 5.1.13
and the like), and Kf is defined as the ratio of the strength of unnotched
material to the strength of notched material. Ratio Kf is obtained from
laboratory tests, and K is deduced either theoretically or from laboratory
tests, but both must reflect the same state of stress and type of loading.
The value of q lies between 0 and 1, so that (1) if q 5 0, Kf 5 1 and the
material is not notch-sensitive (soft metals such as copper, aluminum,
and annealed low-strength steel); (2) if q 5 1, Kf 5 K, the material is
fully notch-sensitive and the full value of the geometric stress concen-
tration factor is not diminished (hard, high-strength steel). In practice, q
will lie somewhere between 0 and 1, but it may be hard to quantify.

Table 5.1.5 Typical Approximate Fatigue Limits for Rev

Tensile Fatigue
strength, limit ,

Metal 1,000 lb/in2 1,000 lb/in2

Cast iron 20–50 6–18

Malleable iron 50 24
Cast steel 60–80 24–32
Armco iron 44 24
Plain carbon steels 60–150 25–75
SAE 6150, heat-treated 200 80
Nitralloy 125 80
Brasses, various 25–75 7–20
Zirconium crystal bar 52 16–18

NOTE: Stress, 1,000 lb/in2 3 6.894 5 stress, MN/m2.
Fig. 5.1.18. Effect of mean stress on the variable stress for failure.

Metals, Trans. ASME, 55, 1933, p. 157, and Buckwalter and Horger,
Investigation of Fatigue Strength of Axles, Press Fits, Surface Rolling
and Effect of Size, Trans. ASM, 25, Mar. 1937, p. 229). Corrosion and
galling (due to rubbing of mating surfaces) cause great reduction of
fatigue strengths, sometimes amounting to as much as 90 percent of the
original endurance limit. Although any corroding agent will promote
severe corrosion fatigue, there is so much difference between the effects
of ‘‘sea water’’ or ‘‘tap water’’ from different localities that numerical
values are not quoted here.

Overstressing specimens above the fatigue limit for periods shorter
than necessary to produce failure at that stress reduces the fatigue limit
in a subsequent test. Similarly, understressing below the fatigue limit
may increase it. Shot peening, nitriding, and cold work usually improve
fatigue properties.

No very good overall correlation exists between fatigue properties
and any other mechanical property of a material. The best correlation is
between the fatigue limit under completely reversed bending stress and
the ordinary tensile strength. For many ferrous metals, the fatigue limit
is approximately 0.40 to 0.60 times the tensile strength if the latter is
below 200,000 lb/in2. Low-alloy high-yield-strength steels often show
higher values than this. The fatigue limit for nonferrous metals is ap-
proximately to 0.20 to 0.50 times the tensile strength. The fatigue limit
in reversed shear is approximately 0.57 times that in reversed bending.

In some very important engineering situations components are cycli-
cally stressed into the plastic range. Examples are thermal strains result-
ing from temperature oscillations and notched regions subjected to sec-
ondary stresses. Fatigue life in the plastic or ‘‘low-cycle’’ fatigue range
has been found to be a function of plastic strain, and low-cycle fatigue
testing is done with strain as the controlled variable rather than stress.
Fatigue life N and cyclic plastic strain «p tend to follow the relationship

N«2
p 5 C

where C is a constant for a material when N , 105. (See Coffin, A Study

ed Bending

Tensile Fatigue
strength, limit ,

Metal 1,000 lb/in2 1,000 lb/in2

Copper 32–50 12–17
Monel 70–120 20–50

Phosphor bronze 55 12
Tobin bronze, hard 65 21
Cast aluminum alloys 18–40 6–11
Wrought aluminum alloys 25–70 8–18
Magnesium alloys 20–45 7–17
Molybdenum, as cast 98 45
Titanium (Ti-75A) 91 45
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of Cyclic-Thermal Stresses in a Ductile Material, Trans. ASME, 76,
1954, p. 947.)

The type of physical change occurring inside a material as it is re-
peatedly loaded to failure varies as the life is consumed, and a number
of stages in fatigue can be distinguished on this basis. The early stages

curve OA in Fig. 5.1.19 is the region of primary creep, AB the region
of secondary creep, and BC that of tertiary creep. The strain rates, or
the slopes of the curve, are decreasing, constant, and increasing,
respectively, in these three regions. Since the period of the creep test
is usually much shorter than the duration of the part in service,
various extrapolation procedures are followed (see Gittus, ‘‘Creep,
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comprise the events causing nucleation of a crack or flaw. This is most
likely to appear on the surface of the material; fatigue failures generally
originate at a surface. Following nucleation of the crack, it grows during
the crack-propagation stage. Eventually the crack becomes large
enough for some rapid terminal mode of failure to take over such as
ductile rupture or brittle fracture. The rate of crack growth in the crack-
propagation stage can be accurately quantified by fracture mechanics
methods. Assuming an initial flaw and a loading situation as shown in
Fig. 5.1.15, the rate of crack growth per cycle can generally be ex-
pressed as

da/dN 5 C0(DKI)n (5.1.3)

where C0 and n are constants for a particular material and DKI is the
range of stress intensity per cycle. KI is given by (5.1.1). Using (5.1.3),
it is possible to predict the number of cycles for the crack to grow to a
size at which some other mode of failure can take over. Values of the
constants C0 and n are determined from specimens of the same type as
those used for determination of KIc but are instrumented for accurate
measurement of slow crack growth.

Constant-amplitude fatigue-test data are relevant to many rotary-
machinery situations where constant cyclic loads are encountered.
There are important situations where the component undergoes vari-
able loads and where it may be advisable to use random-load testing.
In this method, the load spectrum which the component will experi-
ence in service is determined and is applied to the test specimen
artificially.

CREEP

Experience has shown that, for the design of equipment subjected to
sustained loading at elevated temperatures, little reliance can be placed
on the usual short-time tensile properties of metals at those tempera-
tures. Under the application of a constant load it has been found that
materials, both metallic and nonmetallic, show a gradual flow or creep
even for stresses below the proportional limit at elevated temperatures.
Similar effects are present in low-melting metals such as lead at room
temperature. The deformation which can be permitted in the satisfactory
operation of most high-temperature equipment is limited.

In metals, creep is a plastic deformation caused by slip occurring
along crystallographic directions in the individual crystals, together
with some flow of the grain-boundary material. After complete release
of load, a small fraction of this plastic deformation is recovered with
time. Most of the flow is nonrecoverable for metals.

Since the early creep experiments, many different types of tests have
come into use. The most common are the long-time creep test under
constant tensile load and the stress-rupture test. Other special forms are
the stress-relaxation test and the constant-strain-rate test.

The long-time creep test is conducted by applying a dead weight to one
end of a lever system, the other end being attached to the specimen
surrounded by a furnace and held at constant temperature. The axial
deformation is read periodically throughout the test and a curve is plot-
ted of the strain «0 as a function of time t (Fig. 5.1.19). This is repeated
for various loads at the same testing temperature. The portion of the

Fig. 5.1.19. Typical creep curve.
Viscoelasticity and Creep Fracture in Solids,’’ Wiley, 1975). See
Table 5.1.6.

In practical applications the region of constant-strain rate (secondary
creep) is often used to estimate the probable deformation throughout the
life of the part. It is thus assumed that this rate will remain constant
during periods beyond the range of the test-data. The working stress is
chosen so that this total deformation will not be excessive. An arbitrary
creep strength, which is defined as the stress which at a given tempera-
ture will result in 1 percent deformation in 100,000 h, has received a
certain amount of recognition, but it is advisable to determine the proper
stress for each individual case from diagrams of stress vs. creep rate
(Fig. 5.1.20) (see ‘‘Creep Data,’’ ASTM and ASME).

Fig. 5.1.20. Creep rates for 0.35% C steel.

Additional temperatures (°F) and stresses (in 1,000 lb/in2) for stated
creep rates (percent per 1,000 h) for wrought nonferrous metals are as
follows:

60-40 Brass: Rate 0.1, temp. 350 (400), stress 8 (2); rate 0.01, temp
300 (350) [400], stress 10 (3) [1].

Phosphor bronze: Rate 0.1, temp 400 (550) [700] [800], stress 15 (6)
[4] [4]; rate 0.01, temp 400 (550) [700], stress 8 (4) [2].

Nickel: Rate 0.1, temp 800 (1000), stress 20 (10).
70 CU, 30 NI. Rate 0.1, temp 600 (750), stress 28 (13–18); rate 0.01,

temp 600 (750), stress 14 (8–9).
Aluminum alloy 17 S (Duralumin): Rate 0.1, temp 300 (500) [600],

stress 22 (5) [1.5].
Lead pure (commercial) (0.03 percent Ca): At 110°F, for rate 0.1

percent the stress range, lb/in2, is 150–180 (60–140) [200–220]; for
rate of 0.01 percent, 50–90 (10–50) [110–150].

Stress, 1,000 lb/in2 3 6.894 5 stress, MN/m2, tk 5 5⁄9(tF 1 459.67).

Structural changes may occur during a creep test, thus altering the
metallurgical condition of the metal. In some cases, premature rupture
appears at a low fracture strain in a normally ductile metal, indicating
that the material has become embrittled. This is a very insidious condi-
tion and difficult to predict. The stress-rupture test is well adapted to
study this effect. It is conducted by applying a constant load to the
specimen in the same manner as for the long-time creep test. The nomi-
nal stress is then plotted vs. the time for fracture at constant temperature
on a log-log scale (Fig. 5.1.21).
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Table 5.1.6 Stresses for Given Creep Rates and Temperatures*

Creep rate 0.1% per 1,000 h Creep rate 0.01% per 1,000 h

Material Temp, °F 800 900 1,000 1,100 1,200 800 900 1,000 1,100 1,200

Wrought steels:
SAE 1015
0.20 C, 0.50 Mo
0.10–0.25 C, 4–6 Cr 1 Mo
SAE 4140
SAE 1030–1045

17–27
26–33

22
27–33

8–25

11–18
18–25
15–18
20–25

5–15

3–12
9–16
9–11
7–15

5

2–7
2–6
3–6
4–7

2

1
1–2
2–3
1–2

1

10–18
16–24
14–17
19–28
5–15

6–14
11–22
11–15
12–19

3–7

3–8
4–12
4–7
3–8
2–4

1
2

2–3
2–4

1

1
1–2

1

Commercially pure iron 7 4 3 5 2
0.15 C, 1–2.5 Cr, 0.50 Mo
SAE 4340
SAE X3140
0.20 C, 4–6 Cr
0.25 C, 4–6 Cr 1 W
0.16 C, 1.2 Cu
0.20 C, 1 Mo
0.10–0.40 C, 0.2–0.5 Mo,

1–2 Mn
SAE 2340
SAE 6140
SAE 7240
Cr 1 Va 1 W, various

25–35
20–40

7–10
30
30

35

30–40
7–12
30
30

20–70

18–28
15–30

10–20
10–15

18
27

12–20
5

12
21

14–30

8–20
2–12
5–4
7–10
4–10

10–15
12

4–14
2
4

6–15
5–15

6–8
1–3

1
2–8

3

2

3–4

1

20–30
8–20
3–8

25

25–28

7
30

18–50

12–18

6–11
10–18

12

8–15

6
11

8–18

3–12
1–6
1–2
3–5
2–7
7–12

6

2–8

1
3–9
2–13

2–5

1

1–2

0.5

Temp, °F 1,100 1,200 1,300 1,400 1,500 1,000 1,100 1,200 1,300 1,400

Wrought chrome-nickel steels:
18-8†
10–25 Cr, 10–30 Ni‡

10–18
10–20

5–11
5–15

3–10
3–10

2–5
2–5

2.5 11–16 5–12
6–15

2–10
3–10 2–8

1–2
1–3

Temp, °F 800 900 1,000 1,100 1,200 800 900 1,000 1,100 1,200

Cast steels:
0.20–0.40 C
0.10–0.30 C, 0.5–1 Mo
0.15–0.30 C, 4–6 Cr 1 Mo
18–8§
Cast iron
Cr Ni cast iron

10–20
28

25–30

20

5–10
20–30
15–25

8

3
6–12
8–15

20–25
4
9

2
8

15 10

8–15
20

20–25

10

10–15
9–15

1
2–5
2–7
20

2
3

2
15 8

* Based on 1,000-h tests. Stresses in 1,000 lb/in2.
† Additional data. At creep rate 0.1 percent and 1,000 (1,600)°F the stress is 18–25 (1); at creep rate 0.01 percent at 1,500°F, the stress is 0.5.
‡ Additional data. At creep rate 0.1 percent and 1,000 (1,600)°F the stress is 10–30 (1).
§ Additional data. At creep rate 0.1 percent and 1,600°F the stress is 3; at creep rate 0.01 and 1,500°F, the stress is 2–3.

The stress reaction is measured in the constant-strain-rate test while
the specimen is deformed at a constant strain rate. In the relaxation test,
the decrease of stress with time is measured while the total strain (elastic
1 plastic) is maintained constant. The latter test has direct application to
the loosening of turbine bolts and to similar problems. Although some
correlation has been indicated between the results of these various types
of tests, no general correlation is yet available, and it has been found
necessary to make tests under each of these special conditions to obtain

of a velocity-modified temperature (see MacGregor and Fisher, A Ve-
locity-modified Temperature for the Plastic Flow of Metals, Jour. Appl.
Mech., Mar. 1945) simplifies the creep problem in reducing the number
of variables.

Superplasticity Superplasticity is the property of some metals
and alloys which permits extremely large, uniform deformation at
elevated temperature, in contrast to conventional metals which neck
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satisfactory results.
The interrelationship between strain rate and temperature in the form
Fig. 5.1.21 Relation between time to failure and stress for a
(950°C) and furnace cooled; (2) hot rolled and annealed 1,580
down and subsequently fracture after relatively small amounts of
plastic deformation. Superplastic behavior requires a metal with
small equiaxed grains, a slow and steady rate of deformation (strain
3% chromium steel. (1) Heat treated 2 h at 1,740°F
°F (860°C).
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rate), and a temperature elevated to somewhat more than half the
melting point. With such metals, large plastic deformation can be
brought about with lower external loads; ultimately, that allows the
use of lighter fabricating equipment and facilitates production of
finished parts to near-net shape.

known load into the surface of a material and measuring the diameter of
the indentation left after the test. The Brinell hardness number, or simply
the Brinell number, is obtained by dividing the load used, in kilograms,
by the actual surface area of the indentation, in square millimeters. The
result is a pressure, but the units are rarely stated.
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Fig. 5.1.22. Stress and strain rate relations for superplastic alloys. (a) Log-log
plot of s 5 K~«m; (b) m as a function of strain rate.

Stress and strain rates are related for a metal exhibiting superplas-
ticity. A factor in this behavior stems from the relationship between
the applied stress and strain rates. This factor m—the strain rate
sensitivity index—is evaluated from the equation s 5 K~«m, where s
is the applied stress, K is a constant, and ~« is the strain rate. Figure
5.1.22a plots a stress/strain rate curve for a superplastic alloy on
log-log coordinates. The slope of the curve defines m, which is max-
imum at the point of inflection. Figure 5.1.22b shows the variation
of m versus ln ~«. Ordinary metals exhibit low values of m—0.2 or
less; for those behaving superplastically, m 5 0.6 to 0.8 1. As m
approaches 1, the behavior of the metal will be quite similar to that
of a newtonian viscous solid, which elongates plastically without
necking down.

In Fig. 5.1.22a, in region I, the stress and strain rates are low and
creep is predominantly a result of diffusion. In region III, the stress
and strain rates are highest and creep is mainly the result of disloca-
tion and slip mechanisms. In region II, where superplasticity is ob-
served, creep is governed predominantly by grain boundary sliding.

HARDNESS

Hardness has been variously defined as resistance to local penetration,
to scratching, to machining, to wear or abrasion, and to yielding. The
multiplicity of definitions, and corresponding multiplicity of hardness-
measuring instruments, together with the lack of a fundamental defini-
tion, indicates that hardness may not be a fundamental property of a
material but rather a composite one including yield strength, work hard-
ening, true tensile strength, modulus of elasticity, and others.

Scratch hardness is measured by Mohs scale of minerals (Sec. 1.2)
which is so arranged that each mineral will scratch the mineral of the
next lower number. In recent mineralogical work and in certain micro-
scopic metallurgical work, jeweled scratching points either with a set
load or else loaded to give a set width of scratch have been used. Hard-
ness in its relation to machinability and to wear and abrasion is gener-
ally dealt with in direct machining or wear tests, and little attempt is
made to separate hardness itself, as a numerically expressed quantity,
from the results of such tests.

The resistance to localized penetration, or indentation hardness, is
widely used industrially as a measure of hardness, and indirectly as an
indicator of other desired properties in a manufactured product. The
indentation tests described below are essentially nondestructive, and in
most applications may be considered nonmarring, so that they may be
applied to each piece produced; and through the empirical relationships
of hardness to such properties as tensile strength, fatigue strength, and
impact strength, pieces likely to be deficient in the latter properties may
be detected and rejected.

Brinell hardness is determined by forcing a hardened sphere under a
BHN 5 PYF 2
(D 2 √D 2 d )G

here BHN is the Brinell hardness number; P the imposed load, kg; D
he diameter of the spherical indenter, mm; and d the diameter of the
esulting impression, mm.

Hardened-steel bearing balls may be used for hardness up to 450, but
eyond this hardness specially treated steel balls or jewels should be
sed to avoid flattening the indenter. The standard-size ball is 10 mm
nd the standard loads 3,000, 1,500, and 500 kg, with 100, 125, and
50 kg sometimes used for softer materials. If for special reasons any
ther size of ball is used, the load should be adjusted approximately as
ollows: for iron and steel, P 5 30D2; for brass, bronze, and other soft
etals, P 5 5D2; for extremely soft metals, P 5 D2 (see ‘‘Methods of
rinell Hardness Testing,’’ ASTM). Readings obtained with other than

he standard ball and loadings should have the load and ball size ap-
ended, as such readings are only approximately equal to those obtained
nder standard conditions.

The size of the specimen should be sufficient to ensure that no part of
he plastic flow around the impression reaches a free surface, and in no
ase should the thickness be less than 10 times the depth of the impres-
ion. The load should be applied steadily and should remain on for at
east 15 s in the case of ferrous materials and 30 s in the case of most
onferrous materials. Longer periods may be necessary on certain soft
aterials that exhibit creep at room temperature. In testing thin materi-

ls, it is not permissible to pile up several thicknesses of material under
he indenter, as the readings so obtained will invariably be lower than
he true readings. With such materials, smaller indenters and loads, or
ifferent methods of hardness testing, are necessary.

In the standard Brinell test, the diameter of the impression is mea-
ured with a low-power hand microscope, but for production work sev-
ral testing machines are available which automatically measure the
epth of the impression and from this give readings of hardness. Such
achines should be calibrated frequently on test blocks of known hard-

ess.
In the Rockwell method of hardness testing, the depth of penetration of

n indenter under certain arbitrary conditions of test is determined. The
ndenter may be either a steel ball of some specified diameter or a
pherical-tipped conical diamond of 120° angle and 0.2-mm tip radius,
alled a ‘‘Brale.’’ A minor load of 10 kg is first applied which causes an
nitial penetration and holds the indenter in place. Under this condition,
he dial is set to zero and the major load applied. The values of the latter
re 60, 100, or 150 kg. Upon removal of the major load, the reading is
aken while the minor load is still on. The hardness number may then be
ead directly from the scale which measures penetration, and this scale
s so arranged that soft materials with deep penetration give low hard-
ess numbers.

A variety of combinations of indenter and major load are possible;
he most commonly used are RB using as indenter a 1⁄16-in ball and a
ajor load of 100 kg and RC using a Brale as indenter and a major load

f 150 kg (see ‘‘Rockwell Hardness and Rockwell Superficial Hardness
f Metallic Materials,’’ ASTM).

Compared with the Brinell test, the Rockwell method makes a
maller indentation, may be used on thinner material, and is more rapid,
ince hardness numbers are read directly and need not be calculated.
owever, the Brinell test may be made without special apparatus and is

omewhat more widely recognized for laboratory use. There is also a
ockwell superficial hardness test similar to the regular Rockwell, except

hat the indentation is much shallower.
The Vickers method of hardness testing is similar in principle to the

rinell in that it expresses the result in terms of the pressure under
he indenter and uses the same units, kilograms per square millimeter.
he indenter is a diamond in the form of a square pyramid with an apical
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angle of 136°, the loads are much lighter, varying between 1 and
120 kg, and the impression is measured by means of a medium-power
compound microscope.

V 5 P/(0.5393d2)

where V is the Vickers hardness number, sometimes called the diamond-

of the work in hardness see Williams, ‘‘Hardness and Hardness Mea-
surements,’’ ASM.

TESTING OF MATERIALS

Testing Machines Machines for the mechanical testing of materials
usually contain elements (1) for gripping the specimen, (2) for deform-

Copyright (C) 1999 by The McGraw-Hill Companies, Inc.  All rights reserved.  Use of
this product is subject to the terms of its License Agreement.   Click here to view.
pyramid hardness (DPH); P the imposed load, kg; and d the diagonal of
indentation, mm. The Vickers method is more flexible and is considered
to be more accurate than either the Brinell or the Rockwell, but the
equipment is more expensive than either of the others and the Rockwell
is somewhat faster in production work.

Among the other hardness methods may be mentioned the Sclero-
scope, in which a diamond-tipped ‘‘hammer’’ is dropped on the surface
and the rebound taken as an index of hardness. This type of apparatus is
seriously affected by the resilience as well as the hardness of the mate-
rial and has largely been superseded by other methods. In the Monotron
method, a penetrator is forced into the material to a predetermined depth
and the load required is taken as the indirect measure of the hardness.
This is the reverse of the Rockwell method in principle, but the loads
and indentations are smaller than those of the latter. In the Herbert
pendulum, a 1-mm steel or jewel ball resting on the surface to be tested
acts as the fulcrum for a 4-kg compound pendulum of 10-s period. The
swinging of the pendulum causes a rolling indentation in the material,
and from the behavior of the pendulum several factors in hardness, such
as work hardenability, may be determined which are not revealed by
other methods. Although the Herbert results are of considerable signifi-
cance, the instrument is suitable for laboratory use only (see Herbert,
The Pendulum Hardness Tester, and Some Recent Developments in
Hardness Testing, Engineer, 135, 1923, pp. 390, 686). In the Herbert
cloudburst test, a shower of steel balls, dropped from a predetermined
height, dulls the surface of a hardened part in proportion to its softness
and thus reveals defective areas. A variety of mutual indentation meth-
ods, in which crossed cylinders or prisms of the material to be tested are
forced together, give results comparable with the Brinell test. These are
particularly useful on wires and on materials at high temperatures.

The relation among the scales of the various hardness methods is not
exact, since no two measure exactly the same sort of hardness, and a
relationship determined on steels of different hardnesses will be found
only approximately true with other materials. The Vickers-Brinell rela-
tion is nearly linear up to at least 400, with the Vickers approximately 5
percent higher than the Brinell (actual values run from 1 2 to 1 11
percent) and nearly independent of the material. Beyond 500, the values
become more widely divergent owing to the flattening of the Brinell
ball. The Brinell-Rockwell relation is fairly satisfactory and is shown in
Fig. 5.1.23. Approximate relations for the Shore Scleroscope are also
given on the same plot.

The hardness of wood is defined by the ASTM as the load in pounds
required to force a ball 0.444 in in diameter into the wood to a depth
of 0.222 in, the speed of penetration being 1⁄4 in/min. For a summary

Fig. 5.1.23. Hardness scales.
ing it, and (3) for measuring the load required in performing the defor-
mation. Some machines (ductility testers) omit the measurement of load
and substitute a measurement of deformation, whereas other machines
include the measurement of both load and deformation through appa-
ratus either integral with the testing machine (stress-strain recorders) or
auxiliary to it (strain gages). In most general-purpose testing machines,
the deformation is controlled as the independent variable and the result-
ing load measured, and in many special-purpose machines, particularly
those for light loads, the load is controlled and the resulting deformation
is measured. Special features may include those for constant rate of
loading (pacing disks), for constant rate of straining, for constant load
maintenance, and for cyclical load variation (fatigue).

In modern testing systems, the load and deformation measurements are
made with load-and-deformation-sensitive transducers which generate
electrical outputs. These outputs are converted to load and deformation
readings by means of appropriate electronic circuitry. The readings are
commonly displayed automatically on a recorder chart or digital meter, or
they are read into a computer. The transducer outputs are typically used
also as feedback signals to control the test mode (constant loading, con-
stant extension, or constant strain rate). The load transducer is usually a
load cell attached to the test machine frame, with electrical output to a
bridge circuit and amplifier. The load cell operation depends on change of
electrical resistivity with deformation (and load) in the transducer ele-
ment. The deformation transducer is generally an extensometer clipped on
to the test specimen gage length, and operates on the same principle as the
load cell transducer: the change in electrical resistance in the specimen
gage length is sensed as the specimen deforms. Optical extensometers are
also available which do not make physical contact with the specimen.
Verification and classification of extensometers is controlled by ASTM
Standards. The application of load and deformation to the specimen is
usually by means of a screw-driven mechanism, but it may also be applied
by means of hydraulic and servohydraulic systems. In each case the load
application system responds to control inputs from the load and deforma-
tion transducers. Important features in test machine design are the meth-
ods used for reducing friction, wear, and backlash. In older testing ma-
chines, test loads were determined from the machine itself (e.g., a pressure
reading from the machine hydraulic pressure) so that machine friction
made an important contribution to inaccuracy. The use of machine-inde-
pendent transducers in modern testing has eliminated much of this source
of error.

Grips should not only hold the test specimen against slippage but
should also apply the load in the desired manner. Centering of the load is
of great importance in compression testing, and should not be neglected in
tension testing if the material is brittle. Figure 5.1.24 shows the theoretical
errors due to off-center loading; the results are directly applicable to
compression tests using swivel loading blocks. Swivel (ball-and-socket)
holders or compression blocks should be used with all except the most
ductile materials, and in compression testing of brittle materials (concrete,
stone, brick), any rough faces should be smoothly capped with plaster of
paris and one-third portland cement. Serrated grips may be used to hold
ductile materials or the shanks of other holders in tension; a taper of 1 in 6
on the wedge faces gives a self-tightening action without excessive jam-
ming. Ropes are ordinarily held by wet eye splices, but braided ropes or
small cords may be given several turns over a fixed pin and then clamped.
Wire ropes should be zinced into forged sockets (solder and lead have
insufficient strength). Grip selection for tensile testing is described in
ASTM standards.

Accuracy and Calibration ASTM standards require that commer-
cial machines have errors of less than 1 percent within the ‘‘loading
range’’ when checked against acceptable standards of comparison at at
least five suitably spaced loads. The ‘‘loading range’’ may be any range
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through which the preceding requirements for accuracy are satisfied,
except that it shall not extend below 100 times the least load to which
the machine will respond or which can be read on the indicator. The use
of calibration plots or tables to correct the results of an otherwise inac-
curate machine is not permitted under any circumstances. Machines
with errors less than 0.1 percent are commercially available (Tate-
Emery and others), and somewhat greater accuracy is possible in the

Two standard forms of test specimens (ASTM) are shown in Figs.
5.1.25 and 5.1.26. In wrought materials, and particularly in those which

Copyright (C) 1999 by The McGraw-Hill Companies, Inc.  All rights reserved.  Use of
this product is subject to the terms of its License Agreement.   Click here to view.
most refined research apparatus.

Fig. 5.1.24. Effect of centering errors on brittle test specimens.

Dead loads may be used to check machines of low capacity; accu-
rately calibrated proving levers may be used to extend the range of
available weights. Various elastic devices (such as the Morehouse prov-
ing ring) made of specially treated steel, with sensitive disortion-mea-
suring devices, and calibrated by dead weights at the NIST (formerly
Bureau of Standards) are mong the most satisfactory means of checking
the higher loads.
5.2 MECHANICS
by J. P. V

REFERENCES: Timoshenko and MacCullough, ‘‘Elements of Strength of Materi-
als,’’ Van Nostrand. Seeley, ‘‘Advanced Mechanics of Materials,’’ Wiley. Timo-
shenko and Goodier, ‘‘Theory of Elasticity,’’ McGraw-Hill. Phillips, ‘‘Introduc-
tion to Plasticity,’’ Ronald. Van Den Broek, ‘‘Theory of Limit Design,’’ Wiley.
Hetényi, ‘‘Handbook of Experimental Stress Anal
las, ‘‘Semi-Conductor and Conventional Strain G
and Harvey, ‘‘The Engineering Uses of Holograph
London. Sellers, ‘‘Basic Training Guide to the Ne
Fig. 5.1.25. Test specimen, 2-in (50-mm) gage length, 1⁄2-in (12.5-mm) diame-
ter. Others available for 0.35-in (8.75-mm) and 0.25-in (6.25-mm) diameters.
(ASTM).

Fig. 5.1.26. Charpy V-notch impact specimens. (ASTM.)

have been cold-worked, different properties may be expected in differ-
ent directions with respect to the direction of the applied work, and the
test specimen should be cut out from the parent material in such a way
as to give the strength in the desired direction. With the exception of
fatigue specimens and specimens of extremely brittle materials, surface
finish is of little practical importance, although extreme roughness tends
to decrease the ultimate elongation.
OF MATERIALS
idosic

tures,’’ Lincoln Arc Welding Foundation. ‘‘Characteristics and Applications
of Resistance Strain Gages,’’ Department of Commerce, NBS Circ. 528,
1954.

versal availability and utilization of computers
the development of many forms of software

on of specific design problems in the area of
will permit the reader to amplify and supple-
ysis,’’ Wiley. Dean and Doug-
ages,’’ Academic. Robertson

y,’’ University Printing House,
w Metrics and SI Units,’’ Na-

EDITOR’S NOTE: The almost uni
in engineering practice has led to
individually tailored to the soluti
mechanics of materials. Their use

ment a good portion of the formulary and tabular collection in this section, as well
tional Tool, Die and Precision Machining Association. Roark and Young, ‘‘For-

mulas for Stress and Strain,’’ McGraw-Hill. Perry and Lissner, ‘‘The Strain Gage
Primer,’’ McGraw-Hill. Donnell, ‘‘Beams, Plates, and Sheets,’’ Engineering So-
cieties Monographs, McGraw-Hill. Griffel, ‘‘Beam Formulas’’ and ‘‘Plate For-
mulas,’’ Ungar. Durelli et al., ‘‘Introduction to the Theoretical and Experimental
Analysis of Stress and Strain,’’ McGraw-Hill. ‘‘Stress Analysis Manual,’’ De-
partment of Commerce, Pub. no. AD 759 199, 1969. Blodgett , ‘‘Welded Struc-
as utilize those powerful computational tools in newer and more powerful tech-
niques to facilitate solutions to problems. Many of the approximate methods,
involving laborious iterative mathematical schemes, have been supplanted by the
computer. Developments along those lines continue apace and bid fair to expand
the types of problems handled, all with greater confidence in the results obtained
thereby.



SIMPLE STRESSES AND STRAINS 5-15

Main Symbols

Unit Stress

S 5 apparent stress
Sv or Ss 5 pure shearing

T 5 true (ideal) stress
S 5 proportional elastic limit

paraffin; m ' 0 for cork. For concrete, m varies from 0.10 to 0.20 at
working stresses and can reach 0.25 at higher stresses; m for ordinary
glass is about 0.25. In the absence of definitive data, m for most struc-
tural metals can be taken to lie between 0.25 and 0.35. Extensive listings
of Poisson’s ratio are found in other sections; see Tables 5.1.3 and 6.1.9.
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p

Sy 5 yield point
SM 5 ultimate strength, tension
Sc 5 ultimate compression
Sv 5 vertical shear in beams
SR 5 modulus of rupture

Moment

M 5 bending
Mt 5 torsion

External Action

P 5 force
G 5 weight of body
W 5 weight of load
V 5 external shear

Modulus of Elasticity

E 5 longitudinal
G 5 shearing
K 5 bulk

Up 5 modulus of resilience
UR 5 ultimate resilience

Geometric

l 5 length
A 5 area
V 5 volume
v 5 velocity
r 5 radius of gyration
I 5 rectangular moment of inertia

IP or J 5 polar moment of inertia

Deformation

e, e9 5 gross deformation
«, «9 5 unit deformation; strain

d or a 5 unit , angular
s9 5 unit , lateral
m 5 Poisson’s ratio
n 5 reciprocal of Poisson’s ratio
r 5 radius
f 5 deflection

SIMPLE STRESSES AND STRAINS

Deformations are changes in form produced by external forces or loads
that act on nonrigid bodies. Deformations are longitudinal, e, a lengthen-
ing (1) or shortening (2) of the body; and angular, a, a change of angle
between the faces.

Unit deformation (dimensionless number) is the deformation in unit
distance. Unit longitudinal deformation (longitudinal strain), « 5 e/l
(Fig. 5.2.1). Unit angular-deformation tan a equals a approx (Fig.
5.2.2).

The accompanying lateral deformation results in unit lateral defor-
mation (lateral strain) «9 5 e9/l9 (Fig. 5.2.1). For homogeneous, iso-
tropic material operating in the elastic region, the ratio «9/« is a constant
and is a definite property of the material; this ratio is called Poisson’s
ratio m.

A fundamental relation among the three interdependent constants E, G,
and m for a given material is E 5 2G(1 1 m). Note that m cannot be
larger than 0.5; thus the shearing modulus G is always smaller than the
elastic modulus E. At the extremes, for example, m ' 0.5 for rubber and
Fig. 5.2.1

Stress is an internal distributed force, or, force per unit area; it is the
internal mechanical reaction of the material accompanying deforma-
tion. Stresses always occur in pairs. Stresses are normal [tensile stress
(1) and compressive stress (2)]; and tangential, or shearing.

Fig. 5.2.2

Intensity of stress, or unit stress, S, lb/in2 (kgf/cm2), is the amount of
force per unit of area (Fig. 5.2.3). P is the load acting through the center
of gravity of the area. The uniformly distributed normal stress is

S 5 P/A

When the stress is not uniformly distributed, S 5 dP/dA.
A long rod will stretch under its own weight G and a terminal load P

(see Fig. 5.2.4). The total elongation e is that due to the terminal load
plus that due to one-half the weight of the rod considered as acting at
the end.

e 5 (Pl 1 Gl/2)/(AE)

The maximum stress is at the upper end.
When a load is carried by several paths to a support , the different paths

take portions of the load in proportion to their stiffness, which is con-
trolled by material (E) and by design.

EXAMPLE. Two pairs of bars rigidly connected (with the same elongation)
carry a load P0 (Fig. 5.2.5). A1 , A2 and E1 , E2 and P1 , P2 and S1 , S2 are cross
sections, moduli of elasticity, loads, and stresses of the bars, respectively; e 5
elongation.

e 5 P1l(E1A1) 5 P2l/(E2A2)
P0 5 2P1 1 2P2

S2 5 P2 /A2 5 1⁄2[P0E2 /(E1A1 1 E2A2)]
S1 5 1⁄2[P0E1 /(E1A1 1 E2A2)]

Temperature Stresses When the deformation arising from change
of temperature is prevented, temperature stresses arise that are propor-
tional to the amount of deformation that is prevented. Let a 5 coeffi-
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Fig. 5.2.3 Fig. 5.2.4

cient of expansion per degree of temperature, l1 5 length of bar at
temperature t1 , and l2 5 length at temperature t2 . Then

l2 5 l1[1 1 a(t2 2 t1)]

If, subsequently, the bar is cooled to a temperature t1 , the proportion-
ate deformation is s 5 a(t2 2 t1) and the corresponding unit stress S 5
Ea(t2 2 t1). For coefficients of expansion, see Sec. 4. In the case of steel, a
change of temperature of 12°F (6.7 K, 6.7°C) will cause in general a
unit stress of 2,340 lb/in2 (164 kgf/cm2).

Fig. 5.2.5

Shearing stresses (Fig. 5.2.2) act tangentially to surface of contact and
do not change length of sides of elementary volume; they change the
angle between faces and the length of diagonal. Two pairs of shearing
stresses must act together. Shearing stress intensities are of equal magni-
tude on all four faces of an element. Sv 5 S9v (Fig. 5.2.6).

Fig. 5.2.6

In the presence of pure shear on external faces (Fig. 5.2.6), the result-
ant stress S on one diagonal plane at 45° is pure tension and on the other
diagonal plane pure compression; S 5 Sv 5 S9v . S on diagonal plane is
called ‘‘diagonal tension’’ by writers on reinforced concrete. Failure
under pure shear is difficult to produce experimentally, except under
torsion and in certain special cases. Figure 5.2.7 shows an ideal case,
ig. 5.2.7 Fig. 5.2.8

nd Fig. 5.2.8 a common form of test piece that introduces bending
tresses.

Let Fig. 5.2.9 represent the symmetric section of area A with a shear-
ng force V acting through its centroid. If pure shear exists, Sv 5 V/A,
nd this shear would be uniformly distributed over the area A. When this
hear is accompanied by bending (transverse shear in beams), the unit shear

ig. 5.2.9

v increases from the extreme fiber to its maximum, which may or may
ot be at the neutral axis OZ. The unit shear parallel to OZ at a point d
istant from the neutral axis (Fig. 5.2.9) is

Sv 5
V

Ib Ee

d

yz dy

here z 5 the section width at distance y; and I is the moment of inertia
f the entire section about the neutral axis OZ. Note that ee

d yz dy is the
rst moment of the area above d with respect to axis OZ. For a rectangu-

ar cross section (Fig. 5.2.10a),

Sv 5
3

2

V

bh F1 2S2y

h
D2G

Sv (max) 5
3

2

V

bh
5

3

2

V

A
for y 5 0

For a circular cross section (Fig. 5.2.10b),

Sv 5
4

3

V

pr2 F1 2Sy

r
D2G

Sv (max) 5
4

3

V

pr2
5

4

3

V

A
for y 5 0

ig. 5.2.10
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Table 5.2.1 Resilience per Unit of Volume Up
(S 5 longitudinal stress; Sv 5 shearing stress; E 5 tension modulus of elasticity; G 5 shearing modulus of elasticity)

Tension or compression
Shear
Beams (free ends)

Rectangular section, bent in arc of circle;
no shear

Ditto, circular section
Concentrated center load; rectangular

cross section
Ditto, circular cross section
Uniform load, rectangular cross section
1-beam section, concentrated center load

1⁄2S2/E
1⁄2S2

v /G

1⁄6S2/E

1⁄8S2/E
1⁄18S2/E

1⁄24S2/E
5⁄36S2/E
3⁄32S2/E

Torsion
Solid circular

Hollow, radii R1 and R2

Springs
Carriage
Flat spiral, rectangular section

Helical: axial load, circular wire
Helical: axial twist
Helical: axial twist , rectangular section

1⁄4Sv
2/G

R2
1 1 R2

2

R2
1

1

4

S2
v

G

1⁄6S2/E
1⁄24S2/E
1⁄4Sv

2/G
1⁄8S2/E
1⁄6S2/E

For a circular ring (thickness small in comparison with the major
diameter), Sv(max) 5 2V/A, for y 5 0.

For a square cross section (diagonal vertical, Fig. 5.2.10c),

Sv 5
V √2

a2 F1 1
y √2

a
2 4Sy

a
D2G

Sv(max) 5 1.591
V

for y 5
e

the elastic limit . For normal stress, resilience 5 work of deformation 5
average force times deformation 5 1⁄2Pe 5 1⁄2AS 3 Sl/E 5 1⁄2S2V/E.

Modulus of resilience Up (in ? lb/in3) [(cm ?kgf/cm3)], or unit resilience,
is the elastic energy stored up in a cubic inch of material at the elastic
limit . For normal stress,

Up 5 1⁄2S2
p /E
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A 4

For an I-shaped cross section (Fig. 5.2.10d),

Sv(max) 5
3

4

V

a Fbe2 2 (b 2 a) f 2

be3 2 (b 2 a) f 3G for y 5 0

Elasticity is the ability of a material to return to its original dimensions
after the removal of stresses. The elastic limit Sp is the limit of stress
within which the deformation completely disappears after the removal
of stress; i.e., no set remains.

Hooke’s law states that , within the elastic limit , deformation produced
is proportional to the stress. Unless modified, the deduced formulas of
mechanics apply only within the elastic limit . Beyond this, they are
modified by experimental coefficients, as, for instance, the modulus of
rupture.

The modulus of elasticity, lb/in2 (kgf/cm2), is the ratio of the increment
of unit stress to increment of unit deformation within the elastic limit .

The modulus of elasticity in tension, or Young’s modulus,

E 5 unit stress/unit deformation 5 Pl/(Ae)

The modulus of elasticity in compression is similarly measured.
The modulus of elasticity in shear or coefficient of rigidity, G 5 Sv /a

where a is expressed in radians (see Fig. 5.2.2).
The bulk modulus of elasticity K is the ratio of normal stress, applied to

all six faces of a cube, to the change of volume.
Change of volume under normal stress is so small that it is rarely of

significance. For example, given a body with length l, width b, thick-
ness d, Poisson’s ratio m, and longitudinal strain «, V 5 lbd 5 original
volume. The deformed volume 5 (1 1 «)l (1 2 m«)b(1 2 m«)d. Ne-
glecting powers of «, the deformed volume 5 (1 1 « 2 2m«)V. The
change in volume is «(1 2 2m)V; the unit volumetric strain is «(1 2 2m).
Thus, a steel rod (m 5 0.3, E 5 30 3 106 lb/in2) compressed to a stress
of 30,000 lb/in2 will experience « 5 0.001 and a unit volumetric strain
of 0.0004, or 1 part in 2,500.

The following relationships exist between the modulus of elasticity in
tension or compression E, modulus of elasticity in shear G, bulk modu-
lus of elasticity K, and Poisson’s ratio m:

E 5 2G(1 1 m)
G 5 E/[2(1 1 m)]
m 5 (E 2 2G)/(2G)
K 5 E/[3(1 2 2m)]
m 5 (3K 2 E)/(6K )

Resilience U (in ? lb)[(cm ?kgf )] is the potential energy stored up in a
deformed body. The amount of resilience is equal to the work required
to deform the body from zero stress to stress S. When S does not exceed
The unit resilience for any other kind of stress, as shearing, bending,
torsion, is a constant times one-half the square of the stress divided by
the appropriate modulus of elasticity. For values, see Table 5.2.1.

Unit rupture work UR , sometimes called ultimate resilience, is mea-
sured by the area of the stress-deformation diagram to rupture.

UR 5 1⁄3eu(Sy 1 2SM) approx

where eu is the total deformation at rupture.
For structural steel, UR 5 1⁄3 3 27⁄100 3 [35,000 1 (2 3 60,000)] 5

13,950 in ? lb/in3 (982 cm ?kgf/cm3).

EXAMPLE 1. A load P 5 40,000 lb compresses a wooden block of cross-sec-
tional area A 5 10 in2 and length 5 10 in, an amount e 5 4⁄100 in. Stress S 5 1⁄10 3
40,000 5 4,000 lb/in2. Unit elongation s 5 4⁄100 4 10 5 1⁄250. Modulus of elasticity
E 5 4,000 4 1⁄250 5 1,000,000 lb/in2. Unit resilience Up 5 1⁄2 3 4,000 3 4,000/
1,000,000 5 8 in ? lb/in3 (0.563 cm ?kgf/cm3).

EXAMPLE 2. A weight G 5 5,000 lb falls through a height h 5 2 ft; V 5
number of cubic inches required to absorb the shock without exceeding a stress of
4,000 lb/in2. Neglect compression of block. Work done by falling weight 5 Gh 5
5,000 3 2 3 12 in ? lb (2,271 3 61 cm ?kgf ) Resilience of block 5 V 3 8 in ? lb 5
5,000 3 2 3 12. Therefore, V 5 15,000 in3 (245,850 cm3).

Thermal Stresses A bar will change its length when its temperature
is raised (or lowered) by the amount Dl0 5 al0(t2 2 32). The linear
coefficient of thermal expansion a is assumed constant at normal tem-
peratures and l0 is the length at 32°F (273.2 K, 0°C). If this expansion
(or contraction) is prevented, a thermal-time stress is developed, equal to
S 5 Ea(t2 2 t1), as the temperature goes from t1 to t2. In thin flat plates
the stress becomes S 5 Ea(t2 2 t1)/(1 2 m); m is Poisson’s ratio. Such
stresses can occur in castings containing large and small sections. Simi-
lar stresses also occur when heat flows through members because of the
difference in temperature between one point and another. The heat
flowing across a length b as a result of a linear drop in temperature Dt
equals Q 5 k ADt/b Btu/h (cal /h). The thermal conductivity k is in
Btu/(h)(ft2)(°F)/(in of thickness) [cal /(h)(m2)(k)/(m)]. The thermal-flow
stress is then S 5 EaQb/(kA). Note, when Q is substituted the stress
becomes S 5 Ea Dt as above, only t is now a function of distance rather
than time.

EXAMPLE. A cast-iron plate 3 ft square and 2 in thick is used as a fire wall.
The temperature is 330°F on the hot side and 160°F on the other. What is the
thermal-flow stress developed across the plate?

S 5 Ea Dt 5 13 3 106 3 6.5 3 1026 3 170
5 14,360 lb/in2 (1,010 kgf/cm2)

or Q 5 2.3 3 9 3 170/2 5 1,760 Btu/h
and S 5 13 3 106 3 6.5 3 1026 3 1,760 3 2/2.3 3 9

5 14,360 lb/in2 (1,010 kgf/cm2)
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COMBINED STRESSES

In the discussion that follows, the element is subjected to stresses lying
in one plane; this is the case of plane stress, or two-dimensional stress.

Simple stresses, defined as such by the flexure and torsion theories, lie
in planes normal or parallel to the line of action of the forces. Normal, as
well as shearing, stresses may, however, exist in other directions. A

60° Sn 5
4,000 1 8,000

2
1

4,000 2 8,000
2

(2 0.5000) 1 0

5 7,000 lb/in2

60° Ss 5
4,000 2 8,000

2
(0.8660) 2 0 5 2 1,732 lb/in2

2

s
i
i
a
t
(

F

d
c

w

F

w
o
5
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particle out of a loaded member will contain normal and shearing
stresses as shown in Fig. 5.2.11. Note that the four shearing stresses
must be of the same magnitude, if equilibrium is to be satisfied.

If the particle is ‘‘cut’’ along the plane AA, equilibrium will reveal
that , in general, normal as well as shearing stresses act upon the plane
AC (Fig. 5.2.12). The normal stress on plane AC is labeled Sn , and
shearing Ss . The application of equilibrium yields

Sn 5
Sx 1 Sy

2
1

Sx 2 Sy

2
cos 2u 1 Sxy sin 2u

and Ss 5
Sx 2 Sy

2
sin 2u 2 Sxy cos 2u

Fig. 5.2.11 Fig. 5.2.12

A sign convention must be used. A tensile stress is positive while com-
pression is negative. A shearing stress is positive when directed as on
plane AB of Fig. 5.2.12; i.e., when the shearing stresses on the vertical
planes form a clockwise couple, the stress is positive.

The planes defined by tan 2u 5 2Sxy /Sx 2 Sy , the principal planes,
contain the principal stresses—the maximum and minimum normal
stresses. These stresses are

SM , Sm 5
Sx 1 Sy

2
6 √SSx 2 Sy

2 D2

1 S2
xy

The maximum and minimum shearing stresses are represented by the
quantity

Ss M,m 5 6√SSx 2 Sy

2 D2

1 S2
xy

and they act on the planes defined by

tan 2u 5 2
Sx 2 Sy

2Sxy

EXAMPLE. The steam in a boiler subjects a paticular particle on the outer
surface of the boiler shell to a circumferential stress of 8,000 lb/in2 and a longitu-
dinal stress of 4,000 lb/in2 as shown in Fig. 5.2.13. Find the stresses acting on the
plane XX, making an angle of 60°with the direction of the 8,000 lb/in2 stress. Find
the principal stresses and locate the principal planes. Also find the maximum and
minimum shearing stresses.

Fig. 5.2.13
SM,m 5
4,000 1 8,000

2
6√S4,000 2 8,000

2 D 1 0

5 6,000 6 2,000
5 8,000 and 4,000 lb/in2 (564 and 282 kgf/cm2)

at tan 2u 5
2 3 0

4,000 2 8,000
5 0 or u 5 90° and 0°

Ss M,m 5 6√S4,000 2 8,000
2 D2

1 0

5 6 2,000 lb/in2 (6 141 kgf/cm2)

Mohr’s Stress Circle The biaxial stress field with its combined
tresses can be represented graphically by the Mohr stress circle. For
nstance, for the particle given in Fig. 5.2.11, Mohr’s circle is as shown
n Fig. 5.2.14. The stress sign convention previously defined must be
dhered to. Furthermore, in order to locate the point (on Mohr’s circle)
hat yields the stresses on a plane u° from the vertical side of the particle
such as plane AA in Fig. 5.2.11), 2u° must be laid off in the same

ig. 5.2.14

irection from the radius to (Sx , Sxy ). For the previous example, Mohr’s
ircle becomes Fig. 5.2.15.

Eight special stress fields are shown in Figs. 5.2.16 to 5.2.23, along
ith Mohr’s circle for each.

ig. 5.2.15

Combined Loading Combined flexure and torsion arise, for instance,
hen a shaft twisted by a torque Mt is bent by forces produced by belts
r gears. An element on the surface, such as ABCD on the shaft of Fig.
.2.24, is subjected to a flexure stress Sx 5 Mc/I 5 8Fl(pd3) and a
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Fig. 5.2.16 Fig. 5.2.17

compression) occurring at a point in two right-angle directions, and the
change of the angle between them is gxy . The strain e at the point in any
direction a at an angle u with the x direction derives as

ea 5
ex 1 ey

2
1

ex 2 ey

2
cos 2u 1

gxy

2
sin 2u

Similarly, the shearing strain g (change in the original right angle
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Fig. 5.2.18 Fig. 5.2.19

Fig. 5.2.20 Fig. 5.2.21

Fig. 5.2.22 Fig. 5.2.23

torsional shearing stress Sxy 5 Mtc/J 5 16Mt(pd3). These stresses will
induce combined stresses. The maximum combined stresses will be

Sn 5 1⁄2 (Sx 6 √S2
x 1 4S2

xy )

and Ss 5 6 1⁄2 √S2
x 1 4S2

xy

The above situation applies to any case of normal stress with shear, as
when a bolt is under both tension and shear. A beam particle subjected
to both flexure and transverse shear is another case.

Fig. 5.2.24

Combined torsion and longitudinal loads exist on a propeller shaft . A
particle on this shaft will contain a tensile stress computed using S 5
F/A and a torsion shearing stress equal to Ss 5 Mtc/J. The free body of a
particle on the surface of a vertical turbine shaft is subjected to direct
compression and torsion.

Fig. 5.2.25

When combined loading results in stresses of the same type and
direction, the addition is algebraic. Such a situation exists on an offset
link like that of Fig. 5.2.25.

Mohr’s Strain Circle Strain equations can also be derived for plane-
strain fields. Strains ex and ey are the extensional strains (tension or
ab

between directions a and b) is defined by

gab 5 (ex 2 ey ) sin 2u 1 gxy cos 2u

Inspection easily reveals that the above equations for ea and gab are
mathematically identical to those for Sn and Ss . Thus, once a sign con-
vention is established, a Mohr circle for strain can be constructed and
used as the stress circle is used. The strain e is positive when an exten-
sion and negative when a contraction. If the direction associated with
the first subscript a rotates counterclockwise during straining with re-
spect to the direction indicated by the second subscript b, the shearing
strain is positive; if clockwise, it is negative. In constructing the circle,
positive extensional strains will be plotted to the right as abscissas and
positive half-shearing strains will be plotted upward as ordinates.

For the strains shown in Fig. 5.2.26a, Mohr’s strain circle becomes
that shown in Fig. 5.2.26b. The extensional strain in the direction a,
making an angle of ua with the x direction, is ea , and the shearing strain
is gab counterclockwise. The strain 90° away is eb . The maximum prin-
cipal strain is eM at an angle uM clockwise from the x direction. The
other principal or minimum strain is em 90° away.

Fig. 5.2.26

PLASTIC DESIGN

Early efforts in stress analysis were based on limit loads, that is, loads
which stress a member ‘‘wholly’’ to the yield strength. Euler’s famous
paper on column action (‘‘Sur la Force des Colonnes,’’ Academie des
Sciences de Berlin, 1757) deals with the column problem this way.
More recently, the concept of limit loads, referred to as limit, or plastic,
design, has found strong application in the design of certain structures.
The theory presupposes a ductile material, absence of stress raisers, and
fabrication free of embrittlement . Local load overstress is allowed, pro-
vided the structure does not deform appreciably.

To visualize the limit-load approach, consider a simple beam of uni-
form section subjected to a concentrated load of midspan, as depicted in
Fig. 5.2.27a. According to elastic theory, the outermost fiber on each
side and at midspan—the section of maximum bending moment—will
first reach the yield-strength value. Across the depth of the beam, the
stress distribution will, of course, follow the triangular pattern, becom-
ing zero at the neutral axis. If the material is ductile, the stress in the
outermost fibers will remain at the yield value until every other fiber
reaches the same value as the load increases. Thus the stress distribution
assumes the rectangular pattern before the plastic hinge forms and fail-
ure ensues.
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The problem is that of finding the final limit load. Elastic-flexure
theory gives the maximum load—triangular distribution—as

Fy 5
2Sybh2

3l

equal to one-half the moment at either end. A preferable situation, it
might be argued, is one in which the moments are the same at the three
stations—solid line. Thus, applying equilibrium to, say, the left half of
the beam yields a bending moment at each of the three plastic hinges of

ML 5
wl2

16
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For the rectangular stress distribution, the limit load becomes

FL 5
Sybh2

l

The ratio FL /Fy 5 1.50—an increase of 50 percent in load capability.
The ratio FL /Fy has been named shape factor (Jenssen, Plastic Design in
Welded Structures Promises New Economy and Safety, Welding Jour.,
Mar. 1959). See Fig. 5.2.27b for shape factors for some other sections.
The shape factor may also be determined by dividing the first moment
of area about the neutral axis by the section modulus.

Fig. 5.2.27

A constant-section beam with both ends fixed, supporting a uni-
formly distributed load, illustrates another application of the plastic-
load approach. The bending-moment diagram based on the elastic
theory drawn in Fig. 5.2.28 (broken line) shows a moment at the center

Fig. 5.2.28
ESIGN STRESSES

f a machine part is to safely transmit loads acting upon it , a permissible
aximum stress must be established and used in the design. This is the

llowable stress, the working stress, or preferably, the design stress. The
esign stress should not waste material, yet should be large enough to
revent failure in case loads exceed expected values, or other uncertain-
ies react unfavorably.

The design stress is determined by dividing the applicable material
roperty—yield strength, ultimate strength, fatigue strength—by a fac-
or of safety. The factor should be selected only after all uncertainties
ave been thoroughly considered. Among these are the uncertainty with
espect to the magnitude and kind of operating load, the reliability of the
aterial from which the component is made, the assumptions involved

n the theories used, the environment in which the equipment might
perate, the extent to which localized and fabrication stresses might
evelop, the uncertainty concerning causes of possible failure, and the
ndangering of human life in case of failure. Factors of safety vary from
ndustry to industry, being the result of accumulated experience with a
lass of machines or a kind of environment . Many codes, such as the
SME code for power shafting, recommend design stresses found safe

n practice.
In general, the ductility of the material determines the property upon

hich the factor should be based. Materials having an elongation of
ver 5 percent are considered ductile. In such cases, the factor of safety
s based upon the yield strength or the endurance limit . For materials
ith an elongation under 5 percent , the ultimate strength must be used
ecause these materials are brittle and so fracture without yielding.
Factors of safety based on yield are often taken between 1.5 and 4.0.

or more reliable materials or well-defined design and operating condi-
ions, the lower factors are appropriate. In the case of untried materials
r otherwise uncertain conditions, the larger factors are safer. The same
alues can be used when loads vary, but in such cases they are applied to
he fatigue or endurance strength. When the ultimate strength deter-
ines the design stress (in the case of brittle materials), the factors of

afety can be doubled.
Thus, under static loading, the design stress for, say, SAE 1020,

hich has a yield strength of 45,000 lb/in2 (3,170 kgf/cm2) may be
aken at 45,000/2, or 22,500 lb/in2 (1,585 kgf/cm2), if a reasonably
ertain design condition exists. A Class 30 cast-iron part might be de-
igned at 30,000/5 or 6,000 lb/in2 (423 kgf/cm2). A 2017S-0 aluminum-
lloy component (13,000 lb/in2 endurance strength) could be computed
t a design stress of 13,000/2.5 or 5,200 lb/in2 (366 kgf/cm2) in the
sual fatigue-load application.

EAMS

or properties of structural steel and wooden beams, see Sec. 12.2.

otation

I 5 rectangular moment of inertia
Ip 5 polar moment of inertia

I/c 5 section modulus
M 5 bending moment

P, W 9 5 concentrated load
Q or V 5 total vertical shear

R 5 reaction
S 5 unit normal stress

s or Sv 5 transverse shearing stress
W 5 total distributed load
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f 5 deflection
i 5 slope
l 5 distance between supports
r 5 radius of gyration

rc 5 radius of curvature
w 5 distributed load per longitudinal unit

h
x

1
3

x

2
3

x

3
5

hlx

6
2

hx3

6l
, if h is in pounds per foot and weight of beam is

neglected. The vertical shear V 5 R1 2
hx

l
3

x

2
5

hl

6
2

hx2

2l
. Note again that V 5

d

dx Shlx

6
2

hx3

6lD 5
hl

6
2

hx2

2l
.
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A simple beam rests on supports at its ends which permit rotation. A
cantilever beam is fixed (no rotation) at one end. When computing reac-
tions and moments, distributed loads may be replaced by their resultants
acting at the center of gravity of the distributed-load area.

Reactions are the forces and/or couples acting at the supports and
holding the beam in place. In general, the weight of the beam should be
accounted for.

The bending moment (pound-feet or pound-inches) (kgf ? m) at any
section is the algebraic sum of the external forces and moments acting
on the beam on one side of the section. It is also equal to the moment of
the internal-stress forces at the section, M 5 e s dA/y. A bending mo-
ment that bends a beam convex downward (tensile stress on bottom
fiber) is considered positive, while convex upward (compression on bot-
tom) is negative.

The vertical shear V (lb) (kgf ) effective on a section is the algebraic
sum of all the forces acting parallel to and on one side of the section,
V 5 oF. It is also equal to the sum of the transverse shear stresses acting
on the section, V 5 e Ss dA.

Moment and shear diagram may be constructed by plotting to scale the
particular entity as the ordinate for each section of the beam. Such
diagrams show in continuous form the variation along the length of the
beam.

Moment-Shear Relation The shear V is the first derivative of mo-
ment with respect to distance along the beam, V 5 dM/dx. This rela-
tionship does not , however, account for any sudden changes in mo-
ment .

Fig. 5.2.29

Fig. 5.2.30

EXAMPLES. Figure 5.2.29 illustrates a simple beam subjected to a uniform

load. M 5 R1x 2 wx 3
x

2
5

w/x

2
2

wx2

2
and V 5 R1 2 wx 5

wl

2
2 wx. Note also

that V 5
d

dx Swlx

2
2

wx2

2 D 5
wl

2
2 wx.

Figure 5.2.30 is a simple beam carrying a uniformly varying load; M 5 R1x 2
Table 5.2.2 gives the reactions, bending-moment equations, vertical
shear equations, and the deflection of some of the more common types
of beams.

Maximum Safe Load on Steel Beams See Table 5.2.3 To obtain
maximum safe load (or maximum deflection under maximum safe load)
for any of the conditions of loading given in Table 5.2.5, multiply the
corresponding coefficient in that table by the greatest safe load (or
deflection) for distributed load for the particular section under consider-
ation as given in Table 5.2.4.

The following approximate factors for reducing the load should be
used when beams are long in comparison with their breadth:

Ratio of unsupported (lateral)
length to flange width or
breadth 20 30 40 50 60 70

Ratio of greatest safe load to
calculated load 1 0.9 0.8 0.7 0.6 0.5

Theory of Flexure A bent beam is shown in Fig. 5.2.31. The con-
cave side is in compression and the convex side in tension. These are
divided by the neutral plane of zero stress A9B9BA. The intersection of
the neutral plane with the face of the beam is in the neutral line or elastic
curve AB. The intersection of the neutral plane with the cross section is
the neutral axis NN9.

Fig. 5.2.31

It is assumed that a beam is prismatic, of a length at least 10 times its
depth, and that the external forces are all at right angles to the axis of the
beam and in a plane of symmetry, and that flexure is slight . Other
assumptions are: (1) That the material is homogeneous, and obeys
Hooke’s law. (2) That stresses are within the elastic limit. (3) That every
layer of material is free to expand and contract longitudinally and later-
ally under stress as if separate from other layers. (4) That the tensile and
compressive moduli of elasticity are equal. (5) That the cross section
remains a plane surface. (The assumption of plane cross sections is
strictly true only when the shear is constant or zero over the cross
section, and when the shear is constant throughout the length of the
beam.)

It follows then that: (1) The internal forces are in horizontal balance.
(2) The neutral axis contains the center of gravity of the cross section,
where there is no resultant axial stress. (3) The stress intensity varies
directly with the distance from the neutral axis.

The moment of the elastic forces about the neutral axis, i.e., the stress
moment or moment of resistance, is M 5 SI/c, where S is an elastic unit
stress at outer fiber whose distance from the neutral axis is c; and I is the
rectangular moment of inertia about the neutral axis. I/c is the section
modulus.

This formula is for the strength of beams. For rectangular beams, M 5
1⁄6Sbh2, where b 5 breadth and h 5 depth; i.e., the elastic strength of
beam sections varies as follows: (1) for equal width, as the square of the
depth; (2) for equal depth, directly as the width; (3) for equal depth and
width, directly as the strength of the material; (4) if span varies, then for
equal depth, width, and material, inversely as the span.
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Table 5.2.2 Beams of Uniform Cross Section, Loaded Transversely

R2 5 W
Mx 5 2 Wx

Mmax 5 2 Wl, (x 5 1)
Qx 5 2 W

f 5
Wl3

3EI
(max)

R1 5
W

2
, R2 5

W

2

Mx 5
Wx

2

Mmax 5
Wl

4
,Sx 5

l

2D
Qx 5 6

W

2

f 5
W

EI

l3

48
(max)

R1 5
Wc1

l
, R2 5

Wc

l

Mx 5
Wc1x

l
, Mx9 5

Wcx1

l

Mmax 5
Wcc1

l
, (x1 5 c1 or x 5 c)

Qx 5
Wc1

l
, Qx1 5

Wc

l

f 5
Wc1

3EIl Fc(l 1 c1)

3 G3/2

(max)

Max f occurs at x 5 √c(l 2 c1)/3

R1 5
5

16
W, R2 5

11

16
W

Mx 5
5

16
Wx

Mx1 5 WlS 5

32
2

11

16

x1

lD
Mmax 5 2

3

16
Wl,Sx1 5

l

2D
Qx 5 1

5

16
W, Qx1 5 2

11

16
W

Qmax 5 2
11

16
W,

Sx 5
l

2
to x 1 lD

f 5
W

EI

7l3

768

R1 5
W

2
, R2 5

W

2

Mx 5
Wl

2 Sx

l
2

1

4D
Mx1 5

2 Wl

2 Sx

l
2

3

4D
Mmax 5

Wl

8
,Sx 5

l

2D
Qx 5

W

2
, Qx1 5 2

W

2

f 5
W

EI

l3

192
(max)

R1 5 W
R2 5 W
Mx 5 2 Wc 5 const

QW to R1
5 2 W

QR1 to R2
5 0

QR2 to W 5 1 W

f1 5
Wcl2

EI8
(max)

f2 5
Wc2

EI3 Sc 1
3l

2D (max)

If a beam is cut in halves vertically, the two halves laid side by side
each will carry only one-half as much as the original beam.

Tables 5.2.6 to 5.2.8 give the properties of various beam cross sec-
tions. For properties of structural-steel shapes, see Sec. 12.2.

Oblique Loading It should be noted that Table 5.2.6 includes certain
cases for which the horizontal axis is not a neutral axis, assuming the
common case of vertical loading. The rectangular section with the diag-

center of gravity, and these two axes are always at right angles to each
other. The principal axes are axes with respect to which the moment of
inertia is, respectively, a maximum and a minimum, and for which the
product of inertia is zero. For symmetrical sections, axes of symmetry
are always principal axes. For unsymmetrical sections, like a rolled angle
section (Fig. 5.2.32), the inclination of the principal axis with the X axis
may be found from the formula tan 2u 5 2Ixy/(Iy 2 Ix ), in which u 5
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onal as a horizontal axis (Table 5.2.6) is such a case. These cases must
be handled by the principles of oblique loading.

Every section of a beam has two principal axes passing through the
angle of inclination of the principal axis to the X axis, Ixy 5 the product
of inertia of the section with respect to the X and Y axes, Iy 5 moment of
inertia of the section with respect to the Y axis, Ix 5 moment of inertia of
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Table 5.2.2 Beams of Uniform Cross Section, Loaded Transversely (Continued )

R2 5 W 5 wl

Mx 5 2
wx2

2

Mmax 5 2
wl2

2
, (x 5 l )

Qx 5 2 wx
Qmax 5 2 wl, (x 5 l )

f 5
W

EI

l3

8
(max)

R1 5
W

2
5

wl

2

R2 5
W

2
5

wl

2

Mx 5
wx

2
(l 2 x)

Mmax 5
wl2

8
, (x 5 1⁄2l)

Qx 5
wl

2
2 wx

Qmax 5
wl

2
, (x 5 0)

f 5
W

EI

5l3

384
(max)

R1 5
3

8
W 5

3

8
wl

R2 5
5

8
W 5

5

8
wl

Mx 5
wx

2 S3

4
l 2 xD

Mmax 5
9

128
wl2,Sx 5

3

8
lD

Mmax 5 2
wl2

8
, (x 5 l )

Qx 5
3

8
wl 2 wx

Qmax 5 2
5

8
wl

f 5
W

EI

l3

185
(max)

R1 5
W

2
5

wl

2
, R2 5

W

2
5

wl

2

Mx 5 2
wl2

2 S1

6
2

x

l
1

x2

l2D
Mmax 5 2

1

12
wl2, (x 5 0, or x 5 l)

Qx 5
wl

2
2 wx

Qmax 5 6
wl

2

f 5
W

EI

l3

384
(max)

R2 5 W 5 total load

Mx 5 2
W

3

x3

l2

Mmax 5 2
Wl

3

Qx 5 2
Wx2

l2

Qmax 5 2 W

f 5
W

EI

l3

15
(max)

R1 5
1

3
W, R2 5

2

3
W

Mx 5
Wx

3 S1 2
x2

l2D
Mmax 5

2

9√3
Wl,Sx 5

1

√3
D

Qx 5 WS1

3
2

x2

l2D
Qmax 5 2

2

3
W, (x 5 l)

f 5 0.01304
Wl3

EI
(max)
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Table 5.2.2 Beams of Uniform Cross Section, Loaded Transversely (Continued )

R1 5
W

2
, R2 5

W

2

Mx 5 WxS1

2
2

x

l
1

2x2

3l2D
Mmax 5

Wl

12
,Sx 5

1

2
lD

Qx 5 WS1

2
2

2x

l
1

2x2

l2 D
Qmax 5 6

W

2
, (x 5 0)

f 5
W

EI

3l3

320
(max)

R1 5
W

2
, R2 5

W

2

Mx 5 WxS1

2
2

2

3

x2

l2D
Mmax 5

Wl

6
,Sx 5

1

2
lD

Qx 5 WS1

2
2

2x2

l2 D
Qmax 5 6

W

2
, (x 5 0)

f 5
W

EI

l3

60
(max)

R1 5
W

5
, R2 5

4W

5

Mx 5 WxS1

5
2

x2

3l2D
Mmax 5 2

2

15
Wl at support 2

Qx 5 WS1

5
2

x2

l2D
Qmax 5 2

4W

5

f 5
16Wl3

1,500√5EI

5
0.00477Wl3

EI
(max)

R1 5
W

2
5

wl

2
, R2 5

W

2
5

wl

2

Mx 5
Wx

2 S1 2
c

x
2

x

lD, (x . c)

Mx 5 2
Wx2

2l
, (x # c)

Mmax 5
Wl

4 S1

2
2

2c

l D, c #S√2 2 1

2 D l

Qx 5
W

2
2 wx (x . c)

Qx 5 2 wx (x # c)

Concentrated load W9
Uniformly dist . load W 5 wl

R1 5 W9
c2

1(3c 1 2c1)

2l3
1

3

8
W

R2 5 W9
(2c2 1 6cc1 1 3c2

1)c

2l3
1

5

8
W

M2 5 W9
cc1(2c 1 c1)

2l2
1 WS l

8D
MW9 5 W9

cc2
1 (3c 1 2c1)

2l3
1 W

(3c1 2 c)c

8l

(a)
W9

W
,

l2

4c2
1

5c 2 3c1

3c 1 2c1

Mc max 5
R1

2

2W
l,Sx 5

R1l

WD
(b)

W9

W
,

l2(3c1 2 5c)

4c(2c2 1 6cc1 1 3c2
1)

Mc1 max 5 W9c 1
(R1 2 W9)2

2W
l,Sx 5

R1 2 W9

W
lD

Deflection under W9

f 5
W9

EI

c2c3
1(4c 1 3c1)

12l3
1

W

EI

cc2
1(3c 1 c1)

48l
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Table 5.2.2 Beams of Uniform Cross Section, Loaded Transversely (Continued )

Concentrated load W9
Uniformly dist . load W 5 wl; c , c1

R1 5 W9
c1

l
1

W2

2

R2 5 W9
c

l
1

W

2

(a)
W9

W
,

c1 2 c

2c

Mmax 5 R2

x1

2
5

R2
2l

2W
,Sx1 5

R2l

WD
(b)

W9

W
.

c1 2 c

2c

Mmax 5SW9 1
W

2D cc1

l
, (x1 5 c1)

Deflection of beam under W9:

f 5SW9 1
l2 1 cc1

8cc1

WD c2c2
1

3EIl

c , c1

R1 5 W9
(3c 1 c1)c2

1

l3
1

W

2

R2 5 W9
(c 1 3c1)c2

l3
1

W

2

Mmax 5 M1 5 W9
cc2

1

l2
1

Wl

12

Deflection under W9

f 5
1

EI SW9
c3c3

1

3l3
1 W

c2c2
1

24lD

Table 5.2.3 Uniformally Distributed Loads on Simply Supported Rectangular Beams 1-in Wide*
(Laterally Supported Sufficiently to Prevent Buckling)
[Calculated for unit fiber stress at 1,000 lb/in2 (70 kgf/cm2): nominal size]
Total load in pounds (kgf )† including the weight of beam

Depth of beam, in (cm)§
Span, ft

(m)‡ 6 7 8 9 10 11 12 13 14 15 16

5 800 1,090 1,420 1,800 2,220 2,690 3,200 3,750 4,350 5,000 5,690
6 670 910 1,180 1,500 1,850 2,240 2,670 3,130 3,630 4,170 4,740
7 570 780 1,010 1,290 1,590 1,920 2,280 2,680 3,110 3,570 4,060
8 500 680 890 1,120 1,390 1,680 2,000 2,350 2,720 3,130 3,560
9 440 600 790 1,000 1,230 1,490 1,780 2,090 2,420 2,780 3,160

10 400 540 710 900 1,110 1,340 1,600 1,880 2,180 2,500 2,840
11 360 490 650 820 1,010 1,220 1,450 1,710 1,980 2,270 2,590
12 330 450 590 750 930 1,120 1,330 1,560 1,810 2,080 2,370
13 310 420 550 690 850 1,030 1,230 1,440 1,680 1,920 2,190
14 290 390 510 640 790 960 1,140 1,340 1,560 1,790 2,030

15 270 360 470 600 740 900 1,070 1,250 1,450 1,670 1,900
16 250 340 440 560 690 840 1,000 1,170 1,360 1,560 1,780
17 230 320 420 530 650 790 940 1,100 1,280 1,470 1,670
18 220 300 400 500 620 750 890 1,040 1,210 1,390 1,580
19 210 290 380 470 590 710 840 990 1,150 1,320 1,500

20 200 270 360 450 560 670 800 940 1,090 1,250 1,420
22 180 250 320 410 500 610 730 850 990 1,140 1,290
24 160 230 290 370 460 560 670 780 910 1,040 1,180
26 150 210 270 340 420 520 610 720 840 960 1,090
28 140 190 250 320 390 480 570 670 780 890 1,010

30 130 180 240 300 370 450 530 630 730 830 950

* This table is convenient for wooden beams. For any other fiber stress S9, multiply the values in table by S9/1,000. See Sec. 12.2 for properties of wooden beams of commercial sizes.
† To change to kgf, multiply by 0.454.
‡ To change to m, multiply by 0.305.
§ To change to cm, multiply by 2.54.

the section with respect to the X axis. When this principal axis has been
found, the other principal axis is at right angles to it .

Calling the moments of inertia with respect to the principal axes I9x
and I9y , the unit stress existing anywhere in the section at a point whose
coordinates are x and y (Fig. 5.2.33) is S 5 My cos a/I9x 1 Mx sin a/I9y ,
in which M 5 bending moment with respect to the section in question,
a 5 the angle which the plane of bending moment or the plane of the

loads makes with the y axis, M cos a 5 the component of bending
moment causing bending about the principal axis which has been desig-
nated as the X axis, M sin a 5 the component of bending moment
causing bending about the principal axis which has been designated as
the Y axis. The sign of the two terms for unit stress may be determined
by inspection in the usual way, and the result will be tension or com-
pression as determined by the algebraic sum of the two terms.

Copyright (C) 1999 by The McGraw-Hill Companies, Inc.  All rights reserved.  Use of
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Table 5.2.4 Approximate Safe Loads in Pounds (kgf) on Steel Beams,* Simply
Supported, Single Span
Allowable fiber stress for steel, 16,000 lb/in2 (1,127 kgf/cm2) (basis of table)

Beams simply supported at both ends.
L 5 distance between supports, ft (m) a 5 interior area, in2 (cm2)
A 5 sectional area of beam, in2 (cm2) d 5 interior depth, in (cm)
D5 depth of beam, in (cm) w 5 total working load, net tons (kgf )

Greatest safe load, lb Deflection, in

Shape of section Load in middle Load distributed Load in middle Load distributed

Solid rectangle
890AD

L

1,780AD

L

wL3

32 AD2

wL3

52 AD2

Hollow rectangle
890(AD 2 ad )

L

1,780(AD 2 ad )

L

wL3

32(AD2 2 ad 2)

wL3

52(AD2 2 ad 2)

Solid cylinder
667AD

L

1,333AD

L

wL3

24AD2

wL3

38AD2

Hollow cylinder
667(AD 2 ad )

L

1,333(AD 2 ad )

L

wL3

24(AD2 2 ad 2)

wL3

38(AD2 2 ad 2)

I beam
1,795AD

L

3,390AD

L

wL3

58AD2

wL3

93AD2

F

In general, it may be stated that when the plane of the bending mo-
ment coincides with one of the principal axes, the other principal axis is
the neutral axis. This is the ordinary case, in which the ordinary formula
for unit stress may be applied. When the plane of the bending moment
does not coincide with one of the principal axes, the above formula for
oblique loading may be applied.

Internal Moment Beyond the Elastic Limit

lue
S

Copyright (C) 1999 by The McGraw-Hill Companies, Inc.  All rights reserved.  Use of
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ig. 5.2.32 Fig. 5.2.33

Table 5.2.5 Coefficients for Correcting Va
Methods of Support and of Loading, Single

Conditions of loading
Beam supported at ends:
Load uniformly distributed over span
Load concentrated at center of span
Two equal loads symmetrically concentrated
Load increasing uniformly to one end
Load increasing uniformly to center
Load decreasing uniformly to center

Beam fixed at one end, cantilever:
Load uniformly distributed over span
Load concentrated at end
Load increasing uniformly to fixed end

Beam continuous over two supports equidistant from
Load uniformly distributed over span

1. If distance a . 0.2071l
2. If distance a , 0.2071l

3. If distance a 5 0.2071l
Two equal loads concentrated at ends

NOTE: l 5 length of beam; c 5 distance from support to ne
beam.
Ordinarily, the expression M 5 SI/c is used for stresses above the elastic
limit , in which case S becomes an experimental coefficient SR , the
modulus of rupture, and the formula is empirical. The true relation is
obtained by applying to the cross section a stress-strain diagram from a
tension and compression test , as in Fig. 5.2.34. Figure 5.2.34 shows the
side of a beam of depth d under flexure beyond its elastic limit; line
1–1 shows the distorted cross section; line 3–3, the usual rectilinear

s in Table 5.2.4 for Various
pan

Max relative
deflection under

Max relative max relative safe
safe load load
1.0 1.0
1⁄2 0.80

l/4c
0.974 0.976

3⁄4 0.96
3⁄2 1.08

1⁄4 2.40
1⁄8 3.20
3⁄8 1.92

ends:

l2/(4a2)
l

l 2 4a
5.83
l/(4a)

arest concentrated load; a 5 distance from support to end of
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Table 5.2.6 Properties of Various Cross Sections*
(I 5 moment of inertia; I/c 5 section modulus; r 5 √I/A 5 radius of gyration)

N.A.

I 5
bh3

12

bh3

3

b3h3

6(b2 1 h2)

bh

12
(h2 cos2 a 1 b2 sin2 a)

I

c
5

bh2

6

bh2

3

b2h2

6√b2 1 h2

bh

6
Sh2 cos2 a 1 b2 sin2 a

h cos a 1 b sin a
D

r 5
h

√12
5 0.289h

h

√3
5 0.577h

bh

√6(b2 1 h2) √h2 cos2 a 1 b2 sin2 a

12

I 5
b

12
(H3 2 h3)

H4 2 h4

12

H4 2 h4

12

bh3

36
; c 5

2

3
h

I

c
5

b

6

H3 2 h3

H

1

6

H4 2 h4

H

√2

12

H4 2 h4

H

bh2

24

r 5 √ H3 2 h3

12(H 2 h) √H2 1 h2

12 √H2 1 h2

12

h

√18

N.A.

I 5
bh3

12

5√3

16
R4

1 1 2√2

6
R4

I

c
5

bh2

12
5⁄8R3

5√3

16
R3 0.6906R3

r 5
h

√6 √ 5

24
R 0.475R

NOTE: Square, axis same as first rectangle, side 5 h; I 5 h4/12; I/c 5 h3/6; r 5 0.289h.
Square, diagonal taken as axis: I 5 h4/12; I/c 5 0.1179h3; r 5 0.289h.

relation of stress to strain; and line 2–2, an actual stress-strain diagram,
applied to the cross section of the beam, compression above and tension
below. The neutral axis is then below the gravity axis. The outer material
may be expected to develop greater ultimate strength than in simple
stress, because of the reinforcing action of material nearer the neutral
axis that is not yet overstrained. This leads to an equalization of stress
over the cross section. SR exceeds the ultimate strength SM in tension as

Copyright (C) 1999 by The McGraw-Hill Companies, Inc.  All rights reserved.  Use of
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Fig. 5.2.34
follows: for cast iron, SR 5 2SM ; for sandstone, SR 5 3SM ; for concrete,
SR 5 2.2SM ; for wood (green), SR 5 2.3SM .

In the case of steel I beams, failure begins practically when the elastic
limit in the compression flange is reached.

Because of the support of adjoining material, the elastic limit in flexure
Sp is also greater than in tension, depending upon the relation of breadth
to depth of section. For the same breadth, the difference decreases with
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Table 5.2.6 Properties of Various Cross Sections* (Continued )

Equilateral Polygon
A 5 area
R 5 rad circumscribed

circle
r 5 rad inscribed circle
n 5 no. sides
a 5 length of side
Axis as in preceding

section of octagon

I 5
A

24
(6R2 2 a2)

5
A

48
(12r2 1 a2)

5
AR2

4
(approx)

I

c
5

I

r

5
I

R cos
180°

n

5
AR

4
(approx)

√ I

A
5 √6R2 2 a2

24
'

R

2

5 √12r2 1 a2

48

I 5
6b2 1 6bb1 1 b2

1

36(2b 1 b1)
h3

c 5
1

3

3b 1 2b1

2b 1 b1

h

I

c
5

6b2 1 6bb1 1 b2
1

12(3b 1 2b1)
h2 r 5

h√12b2 1 12bb1 1 2b2
1

6(2b 1 b1)

I 5
BH3 1 bh3

12

I

c
5

BH3 1 bh3

6H

r 5 √ BH3 1 bh3

12(BH 1 bh)

I 5
BH3 2 bh3

12

I

c
5

BH3 2 bh3

6H

r 5 √ BH3 2 bh3

12(BH 2 bh)

I 5 1⁄3(Bc3
1 2 B1h3 1 bc3

3 2 b1h3
1)

c1 5
1

2

aH2 1 B1d2 1 b1d1(2H 2 d1)

aH 1 B1d 1 b1d1

r 5 √ I

Bd 1 bd1 1 a(h 1 h1)

I 5 1⁄3(Bc3
1 2 bh3 1 ac3

2)

c1 5
1

2

aH2 1 bd2

aH 1 bd

c2 5 H 2 c1

r 5 √ I

Bd 1 a(H 2 d)

I 5
pd4

64
5

pr4

4
5

A

4
r2

5 0.05d4 (approx)

I

c
5

pd3

32
5

pr3

4
5

A

4
r

5 0.1d3 (approx)

√ I

A
5

r

2
5

d

4

increase of height . No difference will occur in the case of an I beam, or
with hard materials.

Wide plates will not expand and contract freely, and the value of E
will be increased on account of side constraint . As a consequence of
lateral contraction of the fibers of the tension side of a beam and lateral
swelling of fibers at the compression side, the cross section becomes
distorted to a trapezoidal shape, and the neutral axis is at the center of

Deflection of Beams

When a beam is subjected to bending, the fibers on one side elongate,
while the fibers on the other side shorten (Fig. 5.2.35). These changes in
length cause the beam to deflect . All points on the beam except those
directly over the support fall below their original position, as shown in
Figs. 5.2.31 and 5.2.35.

The elastic curve is the curve taken by the neutral axis. The radius of
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gravity of the trapezoid. Strictly, this shape is one with a curved perime-
ter, the radius being rc /m, where rc is the radius of curvature of the
neutral line of the beam, and m is Poisson’s ratio.
curvature at any point is

rc 5 EI/M
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Table 5.2.6 Properties of Various Cross Sections* (Continued )

dm 5 1⁄2(D 1 d )
s 5 1⁄2(D 2 d )

I 5
p

64
(D4 2 d4)

5
p

4
(R4 2 r4)

5 1⁄4A(R2 1 r2)
5 0.05(D4 2 d4)

(approx)

I

c
5

p

32

D4 2 d4

D

5
p

4

R4 2 r4

R

5 0.8d2
ms (approx)

when
s

dm

is very small

√ I

A
5

√R2 1 r2

2
5

√D2 1 d2

4

I 5 r4Sp

8
2

8

9p
D

5 0.1098r4

I

c2

5 0.1908r3

I

c1

5 0.2587r2

c1 5 0.4244r

√ I

A
5

√9p2 2 64

6p
r 5 0.264r

I 5 0.1098(R4 2 r4 )

2
0.283R2r2(R 2 r)

R 1 r

5 0.3tr1
3 (approx)

when
t

r1

is very small

c1 5
4

3p

R2 1 Rr 1 r2

R 1 r

c2 5 R 2 c1

√ I

A
5 √ 2I

p(R2 2 r2)

5 0.31r1 (approx)

I 5
pa3b

4
5 0.7854a3b

I

c
5

pa2b

4
5 0.7854a2b r 5

a

2

I 5
p

4
(a3b 2 a1

3b1

5
p

4
a2(a 1 3b)t

(approx)

I

c
5

p

4
a(a 1 3b)t

(approx)

r 5 √ I

(pab 2 a1b1 )

5
a

2 √a 1 3b

a 1 b

(approx)

I 5
1

12 F3p

16
d4 1 b(h3 2 d3 ) 1 b3(h 2 d )G

I

c
5

1

6h F3p

16
d4 1 b(h3 1 d3 ) 1 b3(h 2 d )G

r 5 √
I

p
d2

4
1 2b(h 2 d)

(approx)

I 5
t

4 SpB3

16
1 B2h 1

pBh2

2
1

2

3
h3D

h 5 H 2 1⁄2B

I

c
5

2I

H 1 t

r 5 √
I

2SpB

4
1 hD t

A beam bent to a circular curve of constant radius has a constant bending
moment .

Replacing rc in the equation by its approximate geometrical value,
1/rc 5 d 2y/dx2, the fundamental equation from which the elastic curve
of a bent beam can be developed and the deflection of any beam ob-
tained is,

M 5 EI d 2y/dx2 (approx)
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Fig. 5.2.35
Substituting the value of M, in terms of x, and integrating once, gives
the slope of the tangent to the elastic curve of the beam at point x;

tan i 5 dy/dx 5 Ex

0

M dx/(EI). Since i is usually small, tan i 5 i,
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Table 5.2.6 Properties of Various Cross Sections* (Continued )

Corrugated sheet iron,
parabolically curved

I 5
64

105
(b1h1

2 2 b2h2
3), where r 5 √ 3I

t(2B 1 5.2H )
h1 5 1⁄2(H 1 t ) U b1 5 1⁄4(B 1 2.6t )
h2 5 1⁄2(H 2 t ) b2 5 1⁄4(B 2 2.6t )

I

c
5

2I

H 1 t

Approximate values of least radius of gyration r

r 5 0.36336D 0.295D D/4.58 D/3.54 D/6

r 5 D/4.74 D/5 BD/[2.6(B 1 D)] D/4.74

* Some of the cross sections depicted in this table will be encountered most often in machinery as castings, forgings, or individual sections
assembled and joined mechanically (or welded). A number of the sections shown are obsolete and will be encountered mainly in older equipment
and/or building structures.

expressed in radians. A second integration gives the vertical deflection
of any point of the elastic curve from its original position.

EXAMPLE. In the cantilever beam shown in Fig. 5.2.35, the bending moment
at any section 5 2 P(l 2 x) 5 EI d 2y/(dx)2. Integrate and determine constant by
the condition that when x 5 0, dy/dx 5 0. Then EI dy/dx 5 2 P/x 1 1⁄2Px2.
Integrate again; and determine constant by the condition that when x 5 0, y 5 0.
Then EIy 5 2 1⁄2Plx2 1 Px3/6. This is the equation of the elastic curve. When x 5

criterion for design, e.g., of machine tools, for which the relative posi-
tions of tool and workpiece must be maintained while the cutting loads
are applied during operation. Similarly, large steam-turbine shafts sup-
ported on two end bearings must maintain alignment and tight critical
clearances between the rotating blade assemblies and the stationary
stator blades during operation. When more than one beam shares a load,
each beam will assume a portion of the load that is proportional to its
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l, y 5 f 5 2 Pl3/(3EI ). In general, the two constants of integration must be
determined simultaneously.

Deflection in general, f, may be expressed by the equation f 5 Pl3/
(mEI ), where m is a coefficient . See Tables 5.2.2 and 5.2.4 for values of
f for beams of various sections and loadings. For coefficients of deflec-
tion of wooden beams and structural steel shapes, see Sec. 12.2.

Since I varies as the cube of the depth, the stiffness, or inverse deflec-
tion, of various beams varies, other factors remaining constant , in-
versely as the load, inversely as the cube of the span, and directly as the
cube of the depth. This deflection is due to bending moment only. In
general, however, the bending of beams involves transverse shearing
stresses which cause shearing strains and thus add to the total deflection.
The contribution of shearing strain to overall deflection becomes signif-
icant only when the beam span is very short . These strains may affect
substantially the strength as well as the deflection of beams. When
deflection due to transverse shear is to be accounted for, the differential
equation of the elastic curve takes the form

EI
d 2y

dx2
5 EISd 2yb

dx2
1

d 2ys

dx2D 5 M 2
kEI

AG
3

d 2M

dx2

where k is a factor dependent upon the beam cross section. Sergius
Sergev, in ‘‘The Effect of Shearing Forces on the Deflection and
Strength of Beams’’ (Univ. Wash. Eng. Exp. Stn. Bull. 114) gives k 5
1.2 for rectangular sections, 10/9 for circular sections, and 2.4 for I
beams. He also points out that in the case of a deep, rectangular-section
cantilever, carrying a concentrated load at the free end, the deflection
due to shear may be up to 3.1 percent of that due to bending moment; if
this beam supports a uniformly distributed load, it may be up to 4.1
percent . A deep, simple beam deflection may increase up to 15.6 per-
cent when carrying a uniformly distributed load and up to 12.5 percent
when the load is concentrated at midspan.

Design of beams may be based on strength (stress) or on stiffness if
deflection must be limited. Deflection rather than stress becomes the
stiffness. Superposition may be used in connection with both stresses and
deflections.

EXAMPLE. (Fig. 5.2.36). Two wooden stringers—one (A) 8 3 16 in in cross
section and 20 ft in span, the other (B) 8 in 3 8 in 3 16 ft—carrying the center
load P0 5 22,000 lb are required, the load carried by each stringer. The deflections
f of the two stringers must be equal. Load on A 5 P1 , and on B 5 P2 . f 5
P1l3

1/(48EI1) 5 P2l3
2/(48EI2). Then P1/P2 5 l3

2I1/(l3
2I2) 5 4. P0 5 P1 1 P2 5

4P2 1 P2 , whence P2 5 22,000/5 5 4,400 lb (1,998 kgf ) and P1 5 4 3
4,400 5 17,600 lb (7,990 kgf ).

Fig. 5.2.36

Relation between Deflection and Stress

Combine the formula M 5 SI/c 5 Pl/n, where n is a constant , P 5 load,
and l 5 span, with formula f 5 Pl3/(mEI ), where m is a constant . Then

f 5 C99Sl2/(Ec)

where C99 is a new constant 5 n/m. Other factors remaining the same,
the deflection varies directly as the stress and inversely as E. If the span is
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Table 5.2.7

Beam Load n m C99

Cantilever Concentrated at end 1 3 1⁄3
Cantilever Uniform 2 8 1⁄4
Simple Concentrated at center 4 48 1⁄12

Simple Uniform 8 384/5 5⁄48

Fixed ends Concentrated at center 8 192 1⁄24

Fixed ends Uniform 12 384 1⁄32

One end fixed, one end supported Concentrated at center 16/3 768/7 7⁄144

One end fixed, one end supported Uniform 128/9 185 1⁄13

Simple Uniformly varying,
maximum at center

6 60 1⁄10

constant , a shallow beam will submit to greater deformations than a
deeper beam without exceeding a safe stress. If depth is constant , a
beam of double span will attain a given deflection with only one-quarter
the stress. Values of n, m, and C99 are given in Table 5.2.7 (for other
values, see Table 5.2.2).

Graphical Relations

moment diagram e M dx up to that point; and a slope diagram may be
derived from the moment diagram in the same manner as the moment
diagram was derived from the shear diagram.

If I is not constant , draw a new curve whose ordinates are M/I and
use these M/I ordinates just as the M ordinates were used in the case
where I was constant; that is, e(M/I )dx 5 E(i 1 C). The ordinate at any
point of the slope curve is thus proportional to the area of the M/I curve
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Referring to Fig. 5.2.37, the shear V acting at any section is equal to the
total load on the right of the section, or

V 5 E w dx

Since w dx is the product of w, a loading intensity (which is expressed
as a vertical height in the load diagram), and dx, an elementary length
along the horizontal, evidently w dx is the area of a small vertical strip
of the load diagram. Then e w dx is the summation of all such vertical
strips between two indefinite points. Thus, to obtain the shear in any

Fig. 5.2.37

section mn, find the area of the load diagram up to that section, and draw
a second diagram called the shear diagram, any ordinate of which is
proportional to the shear, or to the area in the load diagram to the right
of mn. Since V 5 dM/dx,

E V dx 5 M

By similar reasoning, a moment diagram may be drawn, such that the
ordinate at any point is proportional to the area of the shear diagram to
the right of that point . Since M 5 EI d 2f/dx2,

E M dx 5 EI (df/dx 1 C) 5 EI(i 1 C)

if I is constant . Here C is a constant of integration. Thus i, the slope or
grade of the elastic curve at any point , is proportional to the area of the
to the right of that point . Again, since iE 5 E df/dx.

E iE dx 5 E E df 5 E( f 1 C)

and thus the ordinate f to the elastic curve at any point is proportional to
the area of the slope diagram e i dx up to that point . The equilibrium
polygon may be used in drawing the deflection curve directly from the
M/I diagram.

Thus, the five curves of load, shear, moment , slope, and deflection
are so related that each curve is derived from the previous one by a
process of graphical integration, and with proper regard to scales the
deflection is thereby obtained.

The vertical distance from any point A (Fig. 5.2.38) on the elastic
curve of a beam to the tangent at any other point B equals the moment of
the area of the M/(EI) diagram from A to B about A. This distance, the
tangential deviation tAB , may be used with the slope-area relation and the
geometry of the elastic curve to obtain deflections. These theorems,
together with the equilibrium equations, can be used to compute reac-
tions in the case of statically indeterminate beams.

Fig. 5.2.38

EXAMPLE. The deflections of points B and D (Fig. 5.2.38) are

yB 5 2 tAB 5 moment area
M

EIUB

A

A

5 2
1

EI
3

Pl

4
3

l

4
3

l

3
5 2

Pl3

48EI

uC 5 =uUC

B

5 area
M

EIUC

B

5
1

EI
3

Pl

4
3

l

4
5

Pl2

16EI

yD 5 2SuC 3
l

4
2 tDCD

5 2
Pl2
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Resilience of Beams

The external work of a load gradually applied to a beam, and which
increases from zero to P, is 1⁄2Pf and equals the resilience U. But , from
the formulas P 5 nSI/(cl) and f 5 nSl2/(mcE), where n and m are
constants that depend upon loading and supports, S 5 fiber stress, c 5
distance from neutral axis to outer fiber, and l 5 length of span. Substi-
tute for P and f, and

If the two moving loads are of unequal weight, the condition for maxi-
mum moment is that the maximum moment will occur under the heavy
wheel when the center of the beam bisects the distance between the
resultant of the loads and the heavy wheel. Figure 5.2.41 shows this
position and the shear and moment diagrams.

When several wheel loads constituting a system occur, the several sus-
pected wheels must be examined in turn to determine which will cause
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U 5
n2

m Sk

cD2 S2V

2E

where k is the radius of gyration and V the volume of the beam. For
values of U, see Table 5.2.1.

The resilience of beams of similar cross section at a given stress is
proportional to their volumes. The internal resilience, or the elastic de-
formation energy in the material of a beam in a length x is dU, and

U 5 1⁄2 E M2 dx/(EI ) 5 1⁄2 E M di

where M is the moment at any point x, and di is the angle between the
tangents to the elastic curve at the ends of dx. The values of resilience
and deflection in special cases are easily developed from this equation.

Rolling Loads

Rolling or moving loads are those loads which may change their position
on a beam. Figure 5.2.39 represents a beam with two equal concentrated
moving loads, such as two wheels on a crane girder, or the wheels of a

Fig. 5.2.39

truck on a bridge. Since the maximum moment occurs where the shear
is zero, it is evident from the shear diagram that the maximum moment
will occur under a wheel. x , a/2:

R1 5 PS1 2
2x

l
1

a

lD
M2 5

Pl

2 S1 2
a

l
1

2x

l

a

l
2

4x2

l2 D
R2 5 PS1 1

2x

l
2

a

lD
M1 5

Pl

2 S1 2
a

l
2

2a2

l2
1

2x

l

3a

l
2

4x2

l2 D
M2 max when x 5 1⁄4a
M1 max when x 5 3⁄4a

Mmax 5
Pl

2 S1 2
a

2lD2

5
P

2l Sl 2
a

2D2

EXAMPLE. Two wheel loads of 3,000 lb each, spaced on 5-ft centers,
move on a span of l 5 15 ft , x 5 1.25 ft , and R2 5 2,500 lb. [ Mmax 5 M2 5
2,500 3 6.25 (1,135 3 1.90) 5 15,600 lb ? ft (2,159 kgf ? m).

Figure 5.2.40 shows the condition when two equal loads are equally
distant on opposite sides of the center. The moment is equal under the
two loads.
the greatest moment . The position for the greatest moment that can occur
under a given wheel is, as stated, when the center of the span bisects the
distance between the wheel in question and the resultant of all the loads
then on the span. The position for maximum shear at the support will be
when one wheel is passing off the span.

Fig. 5.2.40

Fig. 5.2.41

Constrained Beams

Constrained beams are those so held or ‘‘built in’’ at one or both ends
that the tangent to the elastic curve remains fixed in direction. These
beams are held at the ends in such a manner as to allow free horizontal
motion, as illustrated by Fig. 5.2.42. A constrained beam is stiffer than a
simple beam of the same material, because of the modification of the
moment by an end resisting moment . Figure 5.2.43 shows the two most
common cases of constrained beams. See also Table 5.2.2.

Fig. 5.2.42 Fig. 5.2.43

Continuous Beams

A continuous beam is one resting upon several supports which may or
may not be in the same horizontal plane. The general discussion for
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beams holds for continuous beams. SvA 5 V, SI/c 5 M, and d 2f/dx2 5
M/(EI ). The shear at any section is equal to the algebraic sum of the
components parallel to the section of all external forces on either side of
the section. The bending moment at any section is equal to the moment
of all external forces on either side of the section. The relations stated
above between shear and moment diagrams hold true for continuous
beams. The bending moment at any section is equal to the bending

Figure 5.2.46 shows the values of the functions for a uniformly
loaded continuous beam resting on three equal spans with four supports.

Continuous beams are stronger and much stiffer than simple beams.
However, a small, unequal subsidence of piers will cause serious

e
ea
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moment at any other section, plus the shear at that section times its arm,
plus the product of all the intervening external forces times their respec-
tive arms. To illustrate (Fig. 5.2.44):

Vx 5 R1 1 R2 1 R3 2 P1 2 P2 2 P3

Mx 5 R1(l1 1 l2 1 x) 1 R2(l2 1 x) 1 R3x
2 P1(l2 1 c 1 x) 2 P2(b 1 x) 2 P3a

Mx 5 M3 1 V3x 2 P3a

Table 5.2.8 gives the value of the moment at the various supports of a
uniformly loaded continuous beam over equal spans, and it also gives
the values of the shears on each side of the supports. Note that the shear
is of opposite sign on either side of the supports and that the sum of the
two shears is equal to the reaction.

Fig. 5.2.44

Figure 5.2.45 shows the relation between the moment and shear dia-
grams for a uniformly loaded continuous beam of four equal spans (see
Table 5.2.8). Table 5.2.8 also gives the maximum bending moment which
will occur between supports, and in addition the position of this moment
and the points of inflection (see Fig. 5.2.46).

Table 5.2.8 Uniformly Loaded Continuous Beams over Equal Spans
(Uniform load per unit length 5 w; length of equal span 5 l )

Notation of Mom
Number of support over

Shear on each
side of support.

L 5 left, R 5 right.
Reaction at any

support is L 1 R
supports of span suppoL R

2 1 or 2 0 1⁄2 0

3 1 0 3⁄8 0
2 5⁄8 5⁄8 1⁄8

4 1 0 4⁄10 0
2 6⁄10 5⁄10 1⁄10

5 1 0 11⁄28 0
2 17⁄28 15⁄28 3⁄28

3 13⁄28 13⁄28 2⁄28

6 1 0 15⁄38 0
2 23⁄38 20⁄38 4⁄38

3 18⁄38 19⁄38 3⁄38

7 1 0 41⁄104 0
2 63⁄104 55⁄104 11⁄10

3 49⁄104 51⁄104 8⁄104

4 53⁄104 53⁄104 9⁄104

8 1 0 56⁄142 0
2 86⁄142 75⁄142 15⁄14

3 67⁄142 70⁄142 11⁄14

4 72⁄142 71⁄142 12⁄14

Values apply to: wl wl wl2

NOTE: The numerical values given are coefficients of the expressions at the foot of each column
Fig. 5.2.45

Fig. 5.2.46

Distance to point Distance to point
nt Max of max moment, of inflection,
ch moment in measured to right measured to right

rt each span from support from support

0.125 0.500 None

0.0703 0.375 0.750
0.0703 0.625 0.250

0.080 0.400 0.800
0.025 0.500 0.276, 0.724

0.0772 0.393 0.786
0.0364 0.536 0.266, 0.806
0.0364 0.464 0.194, 0.734

0.0779 0.395 0.789
0.0332 0.526 0.268, 0.783
0.0461 0.500 0.196, 0.804

0.0777 0.394 0.788
4 0.0340 0.533 0.268, 0.790

0.0433 0.490 0.196, 0.785
0.0433 0.510 0.215, 0.804

0.0778 0.394 0.789
2 0.0338 0.528 0.268, 0.788
2 0.0440 0.493 0.196, 0.790
2 0.0405 0.500 0.215, 0.785

wl2 l l

.
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Table 5.2.9 Beams of Uniform Strength (in Bending)

Elevation
Beam Cross section and plan Formulas

1. Fixed at one end, load P concentrated at other end

Rectangle:
width (b)
constant,
depth (g)
variable

Elevation: 1,
top, straight
line; bottom,
parabola. 2,
complete pa-
rabola

Plan: rectangle

y2 5
6P

bSs

x

h 5 √6Pl

bSs

Deflection at A:

f 5
8P

bE S l

hD3

Rectangle:
width (y)
variable,
depth (h)
constant

Elevation: rec-
tangle

Plan: triangle

y 5
6P

h2Ss

x

b 5
6Pl

h2Ss

Deflection at A:

f 5
6P

bE S l

hD3

Rectangle:
width (z)
variable,
depth (y)
variable

z

y
5 k(const.)

Elevation: cubic
parabola

Plan: cubic pa-
rabola

y3 5
6P

kSs

x

z 5 ky

h 5
3√6Pl

kSs

b 5 kh

Circle: diam
(y) variable

Elevation: cubic
parabola

Plan: cubic pa-
rabola

y3 5
32P

pSs

x

d 5
3√32Pl

pSs

2. Fixed at one end, load of total magnitude P uniformly distributed

Rectangle
width (b)
constant,
depth (y)
variable

Elevation:
triangle

Plan: rectangle

y 5 x √3P

blS

h 5 √3Pl

bSs

f 5 6
P

bE S l

hD3

Rectangle:
width (y)
variable,
depth (h)
constant

Elevation: rec-
tangle

Plan: two para-
bolic curves
with vertices at
free end

y 5
3Px2

lSsh2

b 5
3Pl

Ssh2

Deflection at A:

f 5
3P

bE S l

hD3

Copyright (C) 1999 by The McGraw-Hill Companies, Inc.  All rights reserved.  Use of
this product is subject to the terms of its License Agreement.   Click here to view.



BEAMS 5-35

Table 5.2.9 Beams of Uniform Strength (in Bending) (Continued )

Elevation
Beam Cross section and plan Formulas

2. Fixed at one end, load of total magnitude P uniformly distributed

Rectangle:
width (z)
variable,
depth (y)
variable,

z

y
5 k

Elevation: semi-
cubic parabola

Plan: semicubic
parabola

y3 5
3Px2

kSsl

z 5 ky

h 5
3√3Pl

kSs

b 5 kh

Circle: diam
(y) variable

Elevation: semi-
cubic parabola

Plan: semicubic
parabola

y3 5
16P

p lSs

x2

d 5
3√16Pl

pSs

3. Supported at both ends, load P concentrated at point C

Rectangle:
width (b)
constant,
depth (y)
variable

Elevation: two
parabolas, ver-
tices at points
of support

Plan: rectangle

y 5 √ 3P

Ssb
x

h 5 √ 3Pl

2bSs

f 5
P

2EbS l

hD3

Rectangle:
width (y)
variable,
depth (h)
constant

Elevation: rec-
tangle

Plan: two trian-
gles, vertices
at points of
support

y 5
3P

Ssh2
x

b 5
3Pl

2Ssh2

f 5
3Pl3

8Ebh3

Rectangle:
width (b)
constant,
depth (y or
y1) variable

Elevation: two
parabolas, ver-
tices at points
of support

Plan: rectangle

y2 5
6P(l 2 p)

blSs

x

y1
2 5

6Pp

blSs

x1

h 5 √6P( l 2 p)p

blSs

Load P moving across span

Rectangle:
width (b)
constant,
depth (y)
variable

Elevation:
ellipse

Major axis 5 l
Minor axis 5 2h

Plan: rectangle

x2

S l

2D2
1

y2

3Pl

2bSs

5 1

h 5 √ 3Pl

2bSs
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Table 5.2.9 Beams of Uniform Strength (in Bending) (Continued )

Elevation
Beam Cross section and plan Formulas

4. Supported at both ends, load of total magnitude P uniformly distributed

Rectangle:
width (b)
constant,
depth (y)
variable

Elevation:
ellipse

Plan: rectangle

x2

S l

2D2
1

y2

3Pl

4bSs

5 1

h 5 √ 3Pl

4bSs

Deflection at O:

f 5
1

64

Pl3

EI

5
3

16

P

bE S l

hD3

Rectangle:
width (y)
variable,
depth (h)
constant

Elevation: rec-
tangle

Plan: two parab-
olas with ver-
tices at center
of span

y 5
3P

Ssh2 Sx 2
x2

l D
b 5

3Pl

4Ssh2

changes in sign and magnitude of the bending stresses. reactions, and
shears.

Maxwell’s Theorem When a number of loads rest upon a beam, the
deflection at any point is equal to the sum of the deflections at this point
due to each of the loads taken separately. Maxwell’s theorem states that
if unit loads rest upon a beam at two points A and B, the deflection at A
due to the unit load at B equals the deflection at B due to the unit load
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at A.
Castigliano’s theorem states that the deflection of the point of applica-

tion of an external force acting on a beam is equal to the partial deriva-
tive of the work of deformation with respect to this force. Thus, if P is
the force, f the deflection, and U the work of deformation, which equals
the resilience,

dU/dP 5 f

According to the principle of least work, the deformation of any struc-
ture takes place in such a manner that the work of deformation is a
minimum.

Beams of Uniform Strength

Beams of uniform strength vary in section so that the unit stress S
remains constant , the I/c varies as M. For rectangular beams, of breadth
b and depth d, I/c 5 bd 2/6; and M 5 Sbd 2/6. Thus, for a cantilever beam
of rectangular cross section, under a load P, Px 5 Sbd 2/6. If b is con-
stant , d 2 varies with x, and the profile of the shape of the beam will be a
parabola, as Fig. 5.2.47. If d is constant , b will vary as x and the beam
will be triangular in plan, as shown in Fig. 5.2.48.

Shear at the end of a beam necessitates a modification of the forms
determined above. The area required to resist shear will be P/Sv in a
cantilever and R/Sv in a simple beam. The dotted extensions in Figs.
5.2.47 and 5.2.48 show the changes necessary to enable these canti-
levers to resist shear. The extra material and cost of fabrication, how-
ever, make many of the forms impractical.

Table 5.2.9 shows some of the simple sections of uniform strength. In
none of these, however, is shear taken into account .
Fig. 5.2.47 Fig. 5.2.48

TORSION

Under torsion, a bar (Fig. 5.2.49) is twisted by a couple of magnitude
Pp. Elements of the surface becomes helices of angle d, and a radius
rotates through an angle u in a length l, both d and u being expressed in
radians. Sv 5 shearing unit stress at distance r from center; Ip 5 polar
moment of inertia; G 5 shearing modulus of elasticity. It is assumed
that the cross sections remain plane surfaces. The strain on the cross
section is wholly tangential, and is zero at the center of the section.
Note that ld 5 ru.

In the case of a circular cross section, the stress Sv increases directly as
the distance of the strained element from the center.

The polar moment of inertia Ip for any section may be obtained from
Ip 5 I1 1 I2, where I1 and I2 are the rectangular moments of inertia of
the section about any two lines at right angles to each other, through the
center of gravity.
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The external twisting moment Mt is balanced by the internal resisting
moment .

For strength, Mt 5 SvIp /r.
For stiffness, Mt 5 aGIp/ l.
The torsional resilience U 5 1⁄2Ppa 5 S2

vIpl/(2r2G) 5 a2GIp /(2l).

which has the same shape as the bar and then inflated. The resulting
three-dimensional surface provides the following: (1) The torque trans-
mitted is proportional to twice the volume under the inflated membrane,
and (2) the shear stress at any point is proportional to the slope of the
curve measured perpendicular to that slope. In recent years, several
other mathematical techniques have become widely used, especially
with the aid of faster computational methods available from electronic

)

0
67
55
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Fig. 5.2.49

The state of stress on an element taken from the surface of the shaft ,
as in Fig. 5.2.50, is pure shear. Pure tension exists at right angles to one
45° helix and pure compression at right angles to the opposite helix.

Reduced formulas for shafts of various sections are given in Table
5.2.11. When the ratio of shaft length to the largest lateral dimension in
the cross section is less than approximately 2, the end effects may drasti-
cally affect the torsional stresses calculated.

Failure under torsion in brittle materials is a tensile failure at right
angles to a helical element on the surface. Plastic materials twist off
squarely. Fibrous materials separate in long strips.

Torsion of Noncircular Sections When a section is not circular, the
unit stress no longer varies directly as the distance from the center.
Cross sections become warped, and the greatest unit stress usually
occurs at a point on the perimeter of the cross section nearest the axis of
twist; thus, there is no stress at the corners of square and rectangular
sections. The analyses become complex for noncircular sections, and
the methods for solution of design problems using them most often
admit only of approximations.

Fig. 5.2.50

Torsion problems have been solved for many different noncircular
cross sections by utilizing the membrane analogy, due to Prandtl, which
makes use of the fact that the mathematical treatment of a twisted bar is
governed by the same equations as for a membrane stretched over a hole

Table 5.2.10 Factors for Torsion of Rectangular Shafts (Fig. 5.2.51

b/b 1.00 1.50 1.75 2.00 2.50 3.0
aA 0.208 0.231 0.239 0.246 0.258 0.2
aB 0.208 0.269 0.291 0.309 0.336 0.3

b 0.141 0.196 0.214 0.229 0.249 0.263
computers.
By using finite-difference methods, the differential operators of the

governing equations are replaced with difference operators which are
related to the desired unknown values at a gridwork of points in the
outline of the cross section being investigated.

The finite-element method, commonly referred to as FEM, deals with a
spatial approximation of a complex shape which is then analyzed to
determine deformations, stresses, etc. By using FEM, the exact structure
is replaced with a set of simple structural elements interconnected at a
finite number of nodes. The governing equations for the approximate
structure can be solved exactly. Note that inasmuch as there is an exact
solution for an approximate structure, the end result must be viewed,
and the results thereof used, as approximate solutions to the real struc-
ture.

Using a finite-difference approach to Poisson’s partial differential
equation, which defines the stress functions for solid and hollow shafts
with generalized contours, along with Prandl’s membrane analogy, Isa-
kower has developed a series of practical design charts (ARRADCOM-
MISD Manual UN 80-5, January 1981, Department of the Army). Di-
mensionless charts and tables for transmitted torque and maximum
shearing stress have been generated. Information for circular shafts with
rectangular and circular keyways, external splines and milled flats, as
well as rectangular and X-shaped torsion bars, is presented.

Assuming the stress distribution from the point of maximum stress to
the corner to be parabolic, Bach derived the approximate expression,
SsM 5 9Mt /(2b2h) for a rectangular section, b by h, where h . b. For
closer results, the shearing stresses for a rectangular section (Fig. 5.2.51)
may be expressed SA 5 Mt/(aAb2h) and SB 5 Mt /(aBb2h). The angle of
twist for these shafts is u 5 Mtl/(bGb3h). The factors aA, aB, and b are
functions of the ratio h/b and are given in Table 5.2.10.

In the case of composite sections, such as a tee or angle, the torque that
can be resisted is Mt 5 GuSbhb3; the summation applies to each of the
rectangles into which the section can be divided. The maximum stress
occurs on the component rectangle having the largest b value. It is
computed from

SA 5 MtbAbA/(aAobhb3)

Torque, deflection, and work relations for some additional sections
are given in Table 5.2.11.

Fig. 5.2.51

4.00 5.00 6.00 8.00 10.0 `
0.282 0.291 0.299 0.307 0.312 0.333
0.378 0.392 0.402 0.414 0.421
0.281 0.291 0.299 0.307 0.312 0.333
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Table 5.2.11 Torsion of Shafts of Various Cross Sections
(For strength and stiffness of shafts, see Sec. 8.2)

Angular twist, u1

(length 5 1 in, radius 5 1 in)

In terms of tor- In terms of max
sional moment shear

Torsional
resisting
moment Work of torsion

Cross section Mt (V 5 volume)

p

16
d3Sv

Mt

GIP

5
32

pd4

Mt

G
2

Svmax

G

1

d

1

4

S2
v max

G
V

(Note 1)

p

16

D4 2 d4

D
Sv

32

p (D4 2 d4)

Mt

G
2

Svmax

G

1

D

1

4

S 2
v max

G

D2 1 d2

D2
V

(Note 2)

p

16
b2hSv

(h . b)

16

p

b2 1 h2

b3h3

Mt

G

Svmax

G

b2 1 h2

bh2

1

8

S2
v max

G

b2 1 h2

h2
V

(Note 3)

2⁄9b2hSv

(h . b)
3.6*

b2 1 h2

b3h3

Mt

G
0.8*

Svmax

G

b2 1 h2

bh2

4

45

S2
v max

G

b2 1 h2

h2
V

(Note 4)

2⁄9h3Sv 7.2
1

h4

Mt

G
1.6

Svmax

G

1

h

8

45

S2
v max

G
V

(Note 5)

b2

20
Sv 46.2

1

b4

Mt

G
2.31

Svmax

G

1

b

b3

1.09
Sv 0.967

1

b4

Mt

G
0.9

Svmax

G

1

b

*When h/b 5 1 2 4 8
Coefficient 3.6 becomes 5 3.56 3.50 3.35 3.21
Coefficient 0.8 becomes 5 0.79 0.78 0.74 0.71

NOTES: (1) Svmax
at circumference. (2) Svmax

at outer circumference. (3) Svmax
at A ; SvB 5 16Mt /pbh2. (4) Svmax

at middle of side h; in middle of b,
Sv 5 9Mt /2bh2. (5) Svmax

at middle of side.

COLUMNS

Members subjected to direct compression can be grouped into three
classes. Compression blocks are so short (slenderness ratios below 30)
that bending of member is unlikely. At the other limit , columns so
slender that bending is primary, are the long columns defined by Euler’s
theory. The intermediate columns, quite common in practice, are called
short columns.

when both are fixed, n 5 4; and when one end is fixed with the other
free, n 5 1⁄4. The slenderness ratio that separates long columns from
short ones depends upon the modulus of elasticity and the yield strength
of the column material. When Euler’s formula results in (Pcr /A) . Sy,
strength rather than buckling causes failure, and the column ceases to be
long. In round numbers, this critical slenderness ratio falls between 120
and 150. Table 5.2.12 gives additional facts concerning long columns.

Copyright (C) 1999 by The McGraw-Hill Companies, Inc.  All rights reserved.  Use of
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Long columns and the more slender short columns usually fail by
buckling when the critical load is reached. This is a matter of instability;
that is, the column may continue to yield and deflect even though the
load is not increased above critical. The slenderness ratio is the unsup-
ported length divided by the least radius of gyration, parallel to which it
can bend.

Long columns are handled by Euler’s column formula,

Pcr 5 np2EI/ l2 5 np2EA/(l /r)2

The coefficient n accounts for end conditions. When the column is pivoted
at both ends, n 5 1; when one end is fixed and other rounded, n 5 2;
Short Columns The stress in a short column may be considered
partly due to compression and partly due to bending. A theoretical
equation has not been derived. Empirical, though rational, expressions
are, in general, based on the assumption that the permissible stress must
be reduced below that which could be permitted were it due to compres-
sion only. The manner in which this reduction is made determines the
type of equation as well as the slenderness ratio beyond which the
equation does not apply. Figure 5.2.52 illustrates the situation. Some
typical formulas are given in Table 5.2.13.

EXAMPLE. A machine member unsupported for a length of 15 in has a square
cross section 0.5 in on a side. It is to be subjected to compression. What maximum
safe load can be applied centrally, according to the AISC formula? At the com-
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Table 5.2.12 Strength of Round-ended Columns according to Euler’s Formula*

Low- Medium-
Wrought carbon carbon

Material Cast iron iron† steel steel

Ultimate compressive strength, lb/in2 107,000 53,400 62,600 89,000
Allowable compressive stress, lb/in2 7,100 15,400 17,000 20,000

(maximum)
Modulus of elasticity 14,200,000 28,400,000 30,600,000 31,300,000
Factor of safety 8 5 5 5
Smallest I allowable at worst section, in4 Pl2 Pl2 Pl2 Pl2

17,500,000 56,000,000 60,300,000 61,700,000
Limit of ratio, l/r 50.0 60.6 59.4 55.6

Rectangle (r 5 b√1⁄12), l/b . 14.4 17.5 17.2 16.0
Circle (r 5 1⁄4d ), l/d . 12.5 15.2 14.9 13.9
Circular ring of small thickness (r 5 d√1⁄8), l/d . 17.6 21.4 21.1 19.7

* P 5 allowable load, lb; l 5 length of column, in; b 5 smallest dimension of a rectangular section, in; d 5 diameter of a circular section, in; r 5 least
radius of gyration of section.

† This material is no longer manufactured but may be encountered in existing structures and machinery.

Table 5.2.13 Typical Short-Column Formulas

Formula Material Code Slenderness ratio

Sw 5 17,000 2 0.485S l

rD2

Carbon steels AISC l/r , 20

Sw 5 16,000 2 70 ( l/r) Carbon steels Chicago l/r , 120

Sw 5 15,000 2 50S l

rD Carbon steels AREA l/r , 150

Sw 5 19,000 2 100 ( l/r) Carbon steels Am. Br. Co. 60 ,
l

r
, 120

Scr* 5 135,000 2
15.9

c
S l

r
D2

Alloy-steel tubing ANC
1

√cr
, 65

Sw 5 9,000 2 40S l

rD Cast iron NYC
l

r
, 70

Scr* 5 34,500 2
245

√c
S l

r
D 2017ST Aluminum ANC

1

√cr
, 94

Scr* 5 5,000 2
0.5

c
S l

r
D2

Spruce ANC
l

√cr
, 72

Scr* 5 SyF1 2
Sy

4np2E S l

rD2G Steels Johnson
l

r
, √2np2E

Sy

Scr*† 5
Sy

1 1
ec

r2
secS l

r √ P

4AED
Steels Secant

l

r
, critical

* Scr 5 theoretical maximum, c 5 end fixity coefficient,
c 5 2, both ends pivoted; c 5 2.86, one pivoted, other fixed;
c 5 4, both ends fixed; c 5 1, one end fixed, one end free.

† e is initial eccentricity at which load is applied to center of column cross section.

puted load, what size section (also square) would be needed, if it were to be
designed according to the AREA formula?

l /r 5 15/0.5/√12 5 104 [ short column

P/A 5 17,000 2 0.485 (104)2 5 11,730

or P 5 0.25 3 11,730 5 2,940 lb (1,335 kgf )

2,940
# 15,000 2 50S15laD 5 15,000 2

2,600

two bending moments, M1 due to longitudinal load (1 for compression
and 2 for tension), and M2 due to transverse load. M 5 M2 6 M1. Here
M1 5 Pf and f 5 CSb/2/(Ec).

Copyright (C) 1999 by The McGraw-Hill Companies, Inc.  All rights reserved.  Use of
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and a2 √12 a

thus a2 2 0.173a 2 0.196 5 0 or a 5 0.536 in (1.36 cm)

Combined Flexure and Longitudinal Force Figure 5.2.53 shows a
bar under flexure due to transverse and longitudinal loads. The maxi-
mum fiber stress S is made up of S0, due to the direct action of load P,
and Sb, due to the entire bending moment M. M is the algebraic sum of
 Fig. 5.2.52



5-40 MECHANICS OF MATERIALS

FOR THE CASE OF LONGITUDINAL COMPRESSION. SbI/c 5 M2 1
CPSbl2/(Eo), or Sb 5 M2c(I 2 CPl2/E). The maximum stress is S 5
Sb 1 S0 compression. The constant C for the case of Fig. 5.2.53 is de-
rived from the equations P9l /4 5 SbI/c and f 5 P 9l3/(48EI ). Solving for
f ; f 5 1⁄12 Sbl2/(Ec), or C 5 1⁄12. For a beam supported at the ends and
uniformly loaded, C 5 5⁄48. Other cases can be similarly calculated.

FOR THE CASE OF LONGITUDINAL TENSION. M 5 M2 2 Pf, and Sb 5

Copyright (C) 1999 by The McGraw-Hill Companies, Inc.  All rights reserved.  Use of
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M2c/(I 1 CPl 2/E ). The maximum stress is S 5 Sb 1 S0, tension.

Fig. 5.2.53

ECCENTRIC LOADS

When short blocks are loaded eccentrically in compression or in tension,
i.e., not through the center of gravity (cg), a combination of axial and
bending stress results. The maximum unit stress SM is the algebraic sum
of these two unit stresses.

In Fig. 5.2.54 a load P acts in a line of symmetry at the distance e
from cg; r 5 radius of gyration. The unit stresses are (1) Sc , due to P, as
if it acted through cg, and (2) Sb , due to the bending moment of P acting
with a leverage of e about cg. Thus unit stress S at any point y is

S 5 Sc 6 Sb

5 P/A 6 Pey/I
5 Sc (1 6 ey/r2)

y is positive for points on the same side of cg as P, and negative on the
opposite side. For a rectangular cross section of width b, the maximum
stress SM 5 Sc (1 1 6e/b). When P is outside the middle third of width b
and is a compressive load, tensile stresses occur.

For a circular cross section of diameter d, SM 5 Sc (1 1 8e/d). The
stress due to the weight of the solid will modify these relations.

NOTE. In these formulas e is measured from the gravity axis, and
gives tension when e is greater than one-sixth the width (measured in
the same direction as e), for rectangular sections; and when greater than
one-eighth the diameter for solid circular sections.

If, as in certain classes of masonry construction, the material cannot
withstand tensile stress and thus no tension can occur, the center of mo-
ments (Fig. 5.2.55) is taken at the center of stress. For a rectangular
section, P acts at distance k from the nearest edge. Length under com-
pression 5 3k, and SM 5 2⁄3P/(hk). For a circular section, SM 5
[0.372 1 0.056(k/r)]P/k √rk, where r 5 radius and k 5 distance of P
from circumference. For a circular ring, S 5 average compressive stress
on cross section produced by P ; e 5 eccentricity of P ; z 5 length of
diameter under compression (Fig. 5.2.56). Values of z/r and of the ratio
of Smax to average S are given in Tables 5.2.14 and 5.2.15.
Fig. 5.2.57
Fig. 5.2.54

CHIMNEY PROBLEM. Weight of chimney 5 563,000 lb; e 5 1.56 ft; OD of
chimney 5 10 ft 8 in; ID 5 6 ft 61⁄2 in. Overturning moment 5 Pe 5 878,000
ft ? lb, r1 /r 5 0.6. e/r 5 0.29. This gives z/r . 2. Therefore, the entire area of the
base is under compression. Area under compression 5 55.8 ft2; I 5 546; S 5
563,000/55.8 6 (878,000 3 5.33)/546 5 18,700 (max) and 1,500 (min) lb com-
pression per ft2. From Table 5.2.15, by interpolation, Smax/Sav 5 1.85. [ Smax 5
(563,000/55.8) 3 1.85 5 18,685 lb/ft2 (91,313 kgf/m2).

The kern is the area around the center of gravity of a cross section
within which any load applied will produce stress of only one sign
throughout the entire cross section. Outside the kern, a load produces
stresses of different sign. Figure 5.2.57 shows kerns (shaded) for
various sections.

For a circular ring, the radius of the kern r 5 D[1 1 (d/D)2]/8.

Fig. 5.2.55 Fig. 5.2.56
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Table 5.2.14 Values of the Ratio z/r (Fig. 5.2.56)

r1

re

r 0.0 0.5 0.6 0.7 0.8 0.9 1.0

e

r

0.25 2.00 0.25
0.30 1.82 0.30
0.35 1.66 1.89 1.98 0.35
0.40 1.51 1.75 1.84 1.93 0.40
0.45 1.37 1.61 1.71 1.81 1.90 0.45

0.50 1.23 1.46 1.56 1.66 1.78 1.89 2.00 0.50
0.55 1.10 1.29 1.39 1.50 1.62 1.74 1.87 0.55
0.60 0.97 1.12 1.21 1.32 1.45 1.58 1.71 0.60
0.65 0.84 0.94 1.02 1.13 1.25 1.40 1.54 0.65
0.70 0.72 0.75 0.82 0.93 1.05 1.20 1.35 0.70

0.75 0.59 0.60 0.64 0.72 0.85 0.99 1.15 0.75
0.80 0.47 0.47 0.48 0.52 0.61 0.77 0.94 0.80
0.85 0.35 0.35 0.35 0.36 0.42 0.55 0.72 0.85
0.90 0.24 0.24 0.24 0.24 0.24 0.32 0.49 0.90
0.95 0.12 0.12 0.12 0.12 0.12 0.12 0.25 0.95

Table 5.2.15 Values of the Ratio Smax/Savg
(In determining S average, use load P divided by total area of cross section)

r1

r
e

r 0.0 0.5 0.6 0.7 0.8 0.9 1.0

e

r

0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
0.05 1.20 1.16 1.15 1.13 1.12 1.11 1.10 0.05
0.10 1.40 1.32 1.29 1.27 1.24 1.22 1.20 0.10
0.15 1.60 1.48 1.44 1.40 1.37 1.33 1.30 0.15
0.20 1.80 1.64 1.59 1.54 1.49 1.44 1.40 0.20

0.25 2.00 1.80 1.73 1.67 1.61 1.55 1.50 0.25
0.30 2.23 1.96 1.88 1.81 1.73 1.66 1.60 0.30
0.35 2.48 2.12 2.04 1.94 1.85 1.77 1.70 0.35
0.40 2.76 2.29 2.20 2.07 1.98 1.88 1.80 0.40
0.45 3.11 2.51 2.39 2.23 2.10 1.99 1.90 0.45

0.50 3.55 2.80 2.61 2.42 2.26 2.10 2.00 0.50
0.55 4.15 3.14 2.89 2.67 2.42 2.26 2.17 0.55
0.60 4.96 3.58 3.24 2.92 2.64 2.42 2.26 0.60
0.65 6.00 4.34 3.80 3.30 2.92 2.64 2.42 0.65
0.70 7.48 5.40 4.65 3.86 3.33 2.95 2.64 0.70

0.75 9.93 7.26 5.97 4.81 3.93 3.33 2.89 0.75
0.80 13.87 10.05 8.80 6.53 4.93 3.96 3.27 0.80
0.85 21.08 15.55 13.32 10.43 7.16 4.50 3.77 0.85
0.90 38.25 30.80 25.80 19.85 14.60 7.13 4.71 0.90
0.95 96.10 72.20 62.20 50.20 34.60 19.80 6.72 0.95
1.00 ` ` ` ` ` ` ` 1.00

For a hollow square (H and h 5 lengths of outer and inner sides), the
kern is a square similar to Fig. 5.2.57a, where

rmin 5
H

6

1

√2
F1 1S h

H
D2G 5 0.1179HF1 1S h

H
D2G

For a hollow octagon Ra and Ri 5 radii of circles circumscribing
the outer and inner sides; thickness of wall 5 0.9239(R 2 R ), the

CURVED BEAMS

The application of the flexure formula for a straight beam to the case of
a curved beam results in error. When all ‘‘fibers’’ of a member have the
same center of curvature, the concentric or common type of curved beam
exists (see Fig. 5.2.58). Such a beam is defined by the Winkler-Bach
theory. The stress at a point y units from the centroidal axis is
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a i

kern is an octagon similar to Fig. 5.2.57c, where 0.2256R becomes
0.2256Ra[1 1 (Ri/Ra )2].
S 5
M

AR F1 1
y

Z(R 1 y)G
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M is the bending moment, positive when it increases curvature; Y is
positive when measured toward the convex side; A is the cross-sectional
area; R is the radius of the centroidal axis; Z is a cross-section property
defined by

Z 5 2
1 E y

dA

may be applied. This force must then be eliminated by equating it to
zero at the end.

EXAMPLE. A quadrant of radius R is fixed at one end as shown in Fig.
5.2.59b. The force F is applied in the radial direction at the free end B. Find the
deflection of B.

By moment area:

a

a

B

T
t
i

F

b
p
s
c
o
a
s
c
b
T
d
t
c
m
T
s
E

F
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A R 1 y

Analytical expressions for Z of certain sections are given in Table 5.2.16.
Also Z can be found by graphical integration methods (see any advanced

Fig. 5.2.58

strength book). The neutral surface shifts toward the center of curvature,
or inside fiber, an amount equal to e 5 ZR/(Z 1 1). The Winkler-Bach
theory, though practically satisfactory, disregards radial stresses as well
as lateral deformations and assumes pure bending. The maximum stress
occurring on the inside fiber is S 5 Mhi /(AeRi ), while that on the out-
side fiber is S 5 Mh0 /(AeR0).

EXAMPLE. A split steel ring of rectangular cross section is subjected to a
diametral force of 1,000 lb as shown in Fig. 5.2.59a. Compute the stress at the
point 0.5 in from the outside fiber on plane mm. Also compute the maximum stress.

Z 5 2 1 1
R

h
ln

R 1 C

R 2 C

5 2 1 1
10

4
ln

10 1 2

10 2 2
5 0.0133

S1.5 5
M

AR F1 1
y

Z (R 1 y)G 1
F

A

5
2 1,000 3 10

8 3 10 F1 1
1.5

0.0133(10 1 1.5)G 1
1,000

8

5 2 1,250 1 125 5 2 1,125 lb/in2 (compr.)(79 kgf/cm2)

SM 5
2 1,000

8 F1 1
2 2

0.0133 (10 2 2)G 1
1,000

8

5 2,230 1 125 5 2,355 lb/in2 (166 kgf/cm2)

or e 5
ZR

Z 1 1
5

0.0133 3 10

0.0133 1 1
5 0.131

and SM 5
Mhi

AeRi

1
F

A
5

1,000 3 10 3 1.87

8 3 0.131 3 8
1

1,000

8

5 2,355 lb/in2 (166 kgf/cm2)

The deflection in curved beams can be computed by means of the
moment-area theory. If the origin of axes is taken at the point whose
deflection is wanted, it can be shown that the component displacements
in the x and y directions are

Dx 5 Es

0

My ds

EI
and D y 5 Es

0

Mx ds

EI

The resultant deflection is then equal to D0 5 √Dx
2 1 D2

y in the direction
defined by tan u 5 Dy /Dx . Deflections can also be found conveniently
by use of Castigliano’s theorem. It states that in an elastic system the
displacement in the direction of a force (or couple) and due to that force
(or couple) is the partial derivative of the strain energy with respect to
the force (or couple). Stated mathematically, Dz 5 U/Fz. If a force
does not exist at the point and/or in the direction desired, a dummy force
y 5 R sin u x 5 R(1 2 cos u)
ds 5 R du M 5 FR sin u

BD x 5
FR3

EI Ep/2

0

sin2 du 5
pFR3

4EI

BD y 5
FR3

EI Ep/2

0

sin u (1 2 cos u) du 5 2
FR3

2EI

nd DB 5
FR3

2EI √1 1
p2

4

t ux 5 tan2 1S2
FR3

2EI
3

4EI

pFR3D 5 tan2 1
2

p
5 32.5°

y Castigliano:

BD x 5
U

F
5



Fx
Ep/2

0

F2R3

2EI
sin2u du 5

pFR3

4EI

BD y 5
U

Fy

5


Fy
Ep/2

0

[FR sin u 2 FyR (1 2 cos u)]2 R du

2EI

5 2
FR3

2EI

he Fy , assumed downward, is equated to zero, after the integration and differen-
iation are performed to find BDy . The remainder of the computation is exactly as
n the moment-area method.

ig. 5.2.59

Eccentrically Curved Beams These beams (Fig. 5.2.60) are
ounded by arcs having different centers of curvature. In addition, it is
ossible for either radius to be the larger one. The one in which the
ection depth shortens as the central section is approached may be
alled the arch beam. When the central section is the largest, the beam is
f the crescent type. Crescent I denotes the beam of larger outside radius
nd crescent II of larger inside radius. The stress at the central section of
uch beams may be found from S 5 KMC/I. In the case of rectangular
ross section, the equation becomes S 5 6KM/(bh2) where M is the
ending moment, b is the width of the beam section, and h its height.
he stress factors K for the inner boundary, established from photoelastic
ata, are given in Table 5.2.17. The outside radius is denoted by Ro and
he inside by Ri . The geometry of crescent beams is such that the stress
an be larger in off-center sections. The stress at the central section deter-
ined above must then be multiplied by the position factor k, given in
able 5.2.18. As in the concentric beam, the neutral surface shifts
lightly toward the inner boundary (see Vidosic, Curved Beams with
ccentric Boundaries, Trans. ASME, 79, pp., 1317–1321).

ig. 5.2.60
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Table 5.2.16 Analytical Expressions for Z

Section Expression

Z 5 2 1 1
R

h
ln

R 1 C

R 2 C

Z 5 2 1 1 2SR

rDFR

r
2 √SR

rD
2

2 1G

Z 5 2 1 1
R

A Ft ln(R 1 C1 ) 1 (b 2 t) ln(R 2 C3 ) 2 b ln(R 2 C3 )G
A 5 tC1 2 (b 2 t)C3 1 bC2

Z 5 2 1 1
R

A Fb ln
R 1 C2

R 2 C2

1 (t 2 b) ln
R 1 C1

R 2 C1
G

A 5 2[(t 2 b)C1 1 bC2]

Table 5.2.17 Stress Factors for Inner Boundary at Central Section
(See Fig. 5.2.60)

1. For the arch-type beams

(a) K 5 0.834 1 1.504
h

Ro 1 Ri

if
Ro 1 Ri

h
, 5.

(b) K 5 0.899 1 1.181
h

if 5 ,
Ro 1 Ri

, 10.

Table 5.2.18 Crescent-Beam Position Stress Factors
(See Fig. 5.2.60)

kAngle
u,

deg Inner Outer

10 1 1 0.055H/h 1 1 0.03H/h
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Ro 1 Ri h

(c) In the case of larger section ratios use the equivalent beam solution.

2. For the crescent I-type beams

(a) K 5 0.570 1 1.536
h

Ro 1 Ri

if
Ro 1 Ri

h
, 2.

(b) K 5 0.959 1 0.769
h

Ro 1 Ri

if 2 ,
Ro 1 Ri

h
, 20.

(c) K 5 1.092S h

Ro 1 Ri
D0.0298

if
Ro 1 Ri

h
. 20.

3. For the crescent II-type beams

(a) K 5 0.897 1 1.098
h

Ro 1 Ri

if
Ro 1 Ri

h
, 8.

(b) K 5 1.119S h

Ro 1 Ri
D0.0378

if 8 ,
Ro 1 Ri

h
, 20.

(c) K 5 1.081S h

Ro 1 Ri
D0.0270

if
Ro 1 Ri

h
. 20.
20 1 1 0.164H/h 1 1 0.10H/h
30 1 1 0.365H/h 1 1 0.25H/h
40 1 1 0.567H/h 1 1 0.467H/h

50 1.521 2
(0.5171 2 1.382H/h)1⁄2

1.382
1 1 0.733H/h

60 1.756 2
(0.2416 2 0.6506H/h)1⁄2

0.6506
1 1 1.123H/h

70 2.070 2
(0.4817 2 1.298H/h)1⁄2

0.6492
1 1 1.70H/h

80 2.531 2
(0.2939 2 0.7084H/h)1⁄2

0.3542
1 1 2.383H/h

90 1 1 3.933H/h

NOTE: All formulas are valid for 0 , H/h # 0.325. Formulas for the inner bound-
ary, except for 40 deg, may be used to H/h # 0.36. H 5 distance between centers.

IMPACT

A force or stress is considered suddenly applied when the duration of
load application is less than one-half the fundamental natural period of
vibration of the member upon which the force acts. Under impact, a
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compression wave propagates through the member at a velocity c 5

√E/r, where r is the mass density. As this compression wave travels
back and forth by reflection from one end of the bar to the other, a
maximum stress is produced which is many times larger than what it
would be statically. An exact determination of this stress is most diffi-
cult. However, if conservation of kinetic and strain energies is applied,

on another. Forces due to gravity, inertia, magnetism, etc., which act
over the entire volume of a body, are called body forces. Both surface
and body forces can be best handled if resolved into three orthogonal
components. Surface forces are thus designated X, Y, and Z, while body
forces are labeled X, Y, and Z.

In general, there exists a normal stress s and a shearing stress t at
each point of a loaded member. It is convenient to deal with components
o
p
s
i
n

a

T
d

p
t

a

T
t

p
o
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j
s
p
A
s
c
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t
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i

I
t
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the impact stress is found to be

S9 5 S √ W

Wb
S 3W

3W 1 Wb
D

The weight of the striking mass is here denoted by W, that of the struck
bar by Wb , while S is the static stress, W/A (A is the cross-sectional area
of the bar). Above is the case of sudden impact. When the ratio W/Wb is
small, the stress computed by the above equation may be erroneous. A
better solution of this problem may result from

S9 5 S 1 S √ W

Wb

1
2

3

If a weight W falls a distance h before striking a bar of mass Wb ,
energy conservation will yield the relation

S9 5 SS1 1 √1 1
2h

e
3

3W

3W 1 Wb
D

The elongation e 5 «l 5 SI /E. When the striking mass W is assumed
rigid, the elasticity factor is taken equal to 1. Thus the equation becomes

S9 5 S (1 1 √1 1 2h/e)

If, in addition, h is taken equal to zero (sudden impact), the radical equals
1, and so the stress becomes S9 5 2S. Since Hooke’s law is applicable,
the relations

e9 5 e (1 1 √1 1 2h/e) and e9 5 2e

are also true for the same conditions.
The expression may be converted, by using v2 5 2gh, to

S9 5 S [1 1 √1 1 v2/(eg)]

This might be called the energy impact form. If the natural frequency fn of
the bar is used, the stress equation is

S9 5 S (1 1 √1 1 0.204hf 2
n)

In general, the maximum impact stress in a beam and a shaft can be
approximated from the simplified falling-weight equation. It is neces-
sary, though, to substitute the maximum deflection y for e, in the case of
beams, and for the angle of twist u in the case of shafts. Of course S 5
Mc/I and Mtc/J, respectively. Thus

S9 5 SF1 1 √1 1
2h

y (or u)G
For a more exact solution, elastic yield in each member must be consid-
ered. The theory then yields

S9 5 SF1 1 √1 1
2h

y S 35W

35W 1 17Wb
DG

for a simply supported beam struck in the middle by a weight W.

THEORY OF ELASTICITY

Loaded members in which the stress distribution cannot be estimated
fail of solution by elementary strength-of-material methods. To such
cases, the more advanced mathematical principles of the theory of elas-
ticity must be applied. When this is not possible, experimental stress
analysis has to be used. Because of the complexity of solution, only
some of the more practical problems have been solved by the theory of
elasticity. The more general concepts and methods are presented.

Two kinds of forces may act on a body. Surface forces are distributed
over the surface as the result of, for instance, the pressure of one body
f each of these stresses on each of six orthogonal planes that bound the
oint element. Thus there are at each point six stress components, sx , sy ,
z , tyx 5 txy , txz 5 tzx, and tyz 5 tzy . Similarly, if the normal unit strain

s designated by the letter « and shearing unit strain by g, the six compo-
ents of strain are defined by

«x 5 u/x «y 5 v/y «z 5 w/z
gxy 5 u/y 1 v/x gyz 5 v/z 1 w/y

nd gxz 5 u/z 1 w/x

he elastic displacements of particles on the body in the x, y, and z
irections are identified as the u, v, and w components, respectively.
Since metals have the usually assumed elastic as well as isotropic

roperties, Hooke’s law holds. Therefore, the interrelationships be-
ween stress and strain can easily be obtained.

«x 5
1

E
[sx 2 m(sy 1 sz )]

«y 5
1

E
[sy 2 m(sx 1 sz )]

«z 5
1

E
[sz 2 m(sx 1 sy )]

gxy 5 txy /G gxz 5 txz /G
nd gyz 5 tyz /G

he general case of strain can be obtained by superposing the elonga-
ion strains upon the shearing strains.

Problems depending upon theories of elasticity are considerably sim-
lified if the stresses are all parallel to one plane or if all deformations
ccur in planes perpendicular to the length of the member. The first case
s one of plane stress, as when a thin plate of uniform thickness is sub-
ected to central, boundary forces parallel to the plane of the plate. The
econd is a case of plane strain, such as a gate subjected to hydrostatic
ressure, the intensity of which does not vary along the gate’s length.
ll particles therefore displace at right angles to the length, and so cross

ections remain plane. In plane-stress problems, three of the six stress
omponents vanish, thus leaving only sx , sy , and txy . Similarly, in
lane strain, only «x , «y , and gxy will not equal zero; thus the same three
tresses sx , sy , and txy remain to be considered. Plane problems can
hus be represented by the element shown in Fig. 5.2.61. Equilibrium
onsiderations applied to this particle result in the differential equations
f equilibrium which reduce to

sx

x
1

txy

y
1 X 5 0

nd
sy

y
1

txy

x
1 Y 5 0

ince the two differential equations of equilibrium are insufficient to
nd the three stresses, a third equation must be used. This is the compat-

bility equation relating the three strain components. It is

2«x

y2
1

2«y

x2
5

2gxy

x y

f strains are expressed in terms of the stresses, the compatibility equa-
ion becomes

S 2

x2
1

2

y2D (sx 1 sy) 5 0

ow, in any two-dimensional problem, the compatibility equation along
ith the differential equilibrium equations must be simultaneously
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solved for the three unknown stresses. This is accomplished using stress
functions, which permit the integration and satisfy boundary conditions
in each particular situation.

CYLINDERS AND SPHERES

A thin-wall cylinder has a wall thickness such that the assumption of
constant stress across the wall results in negligible error. Cylinders
having internal-diameter-to-thickness (D/t) ratios greater than 10 are
usually considered thin-walled. Boilers, drums, tanks, and pipes are
often treated as such. Equilibrium equations reveal the circumferential,
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Fig. 5.2.61

In three-dimensional problems, the third dimension must be consid-
ered. This results in three differential equations of equilibrium, as well
as three compatibility equations. The six stress components can thus be
found. The complexity involved in the solution of these equations is
such, however, that only a few special cases have been solved.

In certain problems, such as rotating circular disks, polar coordinates
become more convenient. In such cases, the stress components in a
two-dimensional field are the radial stress sr , the tangential stress su ,
and the shearing stress tru . In terms of these stresses the polar differential
equations become

sr

r
1

1

r

tru

u
1

sr 2 su

r
1 R 5 0

and
1

r

su

u
1

tru

r
1

2tru

r
5 0

The body force per unit volume is represented by R. The compatibility
equation in polar coordinates is

S 2

r2
1

1

r



r
1

1

r2

2

u2D S2f

r2
1

1

r

f

r
1

1

r2

2f

u2D 5 0

f is again a stress function of r and u that will provide a solution of the
differential equations and satisfy boundary conditions. As an example,
the exact solution of a simply supported beam carrying a uniformly dis-
tributed load w yields

sx 5
w

2I
(I2 2 x2) y 1

w

2I S2y3

3
2

2c2y

5 D
The origin of coordinates is at the center of the beam, 2c is the beam
depth, and 2l is the span length. Thus the maximum stress at x 5 0 and

y 5 c is sx 5
wl2c

2I
1

2

15

wc3

I
. The first term represents the stress as

obtained by the elementary flexure theory; the second is a correc-
tion. The second term becomes negligible when c is small compared
to l.

The important case of a flat plate of unit width with a circular hole of
diameter 2a at its center, subjected to a uniform tensile load, has been
solved using polar coordinates. If S is the uniform stress at some dis-
tance from the hole, r is measured from the center of the hole, and u is
the angle of r with respect to the longitudinal axis of the member, the
stresses are

sr 5
S

2 S1 2
a2

r2D 1
S

2 S1 1
3a4

r4
2

4a2

r2 D cos 2u

su 5
S

2 S1 1
a2

r2D 2
S

2 S1 1
3a4

r4 D cos 2u

tru 5 2
S

2 S1 2
3a4

r4
1

2a2

r2 D sin 2u
or hoop, stress to be S 5 pr/t under an internal pressure p (see Fig.
5.2.62). If the cylinder is closed at the ends, a longitudinal stress of
pr/(2t) is developed. The tensile stress developed in a thin hollow
sphere subjected to internal pressure is also pr/(2t).

Fig. 5.2.62

When thin-walled cylinders, such as vacuum tanks and submarines,
are subjected to external pressure, collapse becomes the mode of failure.
The shell is assumed perfectly round and of uniform thickness, the
material obeys Hooke’s law, the radial stress is negligible, and the nor-
mal stress distribution is linear. Other, lesser assumptions are also
made. Using the theory of elasticity, R. G. Sturm (Univ. Ill. Eng. Exp.
Stn. Bull., no 12, Nov. 11, 1941) derived the collapsing pressure as

Wc 5 KES t

D
D3

lb/in2

The factor K, a numerical coefficient, depends upon the L/R and D/t
ratios (D is outside-shell diameter), the kind of end support, and
whether pressure is applied radially only, or at the ends as well. Figures
5.2.63 to 5.2.66, reproduced from the bulletin, supply the K values. N on
these charts indicates the number of lobes into which the shell collapses.
These values are for materials having Poisson’s ratio m 5 0.3. It may
also be pointed out that in the case of long cylinders (infinitely long,
theoretically) the value of K approaches 2/(1 2 m2).

Fig. 5.2.63 Radial external pressure with simply supported edges.

When the cylinder is stiffened with rings, the shell may be assumed to
be divided into a series of shorter shells, equal in length to the ring
spacing. The previous equation can then be applied to a ring-to-ring
length of cylinder. However, the flexural rigidity of the combined
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stiffener and shell EIc necessary to withstand the pressure is EIc 5
WsD3Ls /24. Ws is the pressure, Ls the length between rings, and Ic the
combined moment of inertia of the ring and that portion of the shell
assumed acting with the ring.

shown in Fig. 5.2.67b and the equation is integrated, the general tangen-
tial and radial stress relations, called the Lamé equations, are derived.

St 5
r2

1p1 2 r2
2p2 1 ( p1 2 p2)r2

1r2
2 /r2

r2
2 2 r2

1

and Sr 5
r2

1p1 2 r2
2p2 2 (p1 2 p2)r2

1r2
2 /r2

W

a

F

A

T

S
r

D
i

I

I
e
i
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Fig. 5.2.64 Radial external pressure with fixed edges.

In some instances, cylinders collapse only after a stress in excess of
the elastic limit has been reached; that is, plastic range stresses are
present. In such cases the same equation applies, but the modulus of
elasticity must be modified.

When the average stress Sa is less than the proportional limit Sp , and
the maximum stress (direct, plus bending) is S, the modified modulus

E9 5 EF1 2
1

4 S S 2 Sl

Su 2 Sa
D2G

Su is the modulus of rupture. When the average stress is larger than the
proportional limit, the modified modulus is taken as the tangent at the
average stress.

Fig. 5.2.65 Radial and end external pressure with simply supported edges.

In thick-walled cylinders (Fig. 5.2.67a) the circumferential, hoop, or
tangential stress St is not uniform. In addition a radial stress Sr is present.
When equilibrium is applied to the annulus taken out of Fig. 5.2.67a and
r2
2 2 r2

1

hen the external pressure p2 5 0, the equations reduce to

St 5
r2

1p1

r2
2 2 r2

1
S1 1

r2
2

r2D
nd Sr 5

r2
1p1

r2
2 2 r2

1
S1 2

r2
2

r2D

ig. 5.2.66 Radial and end external pressure with fixed edges.

t the inner boundary the tangential elongation «t is equal to

«t 5 (St 2 mSr )/E

he increase in the bore radius Dr1 resulting therefrom is

Dr1 5
r1 p1

Eh
S1 1 r2

1 /r2
2

1 2 r2
1 /r2

2

1 mD
imilarly a solid shaft of r radius under external pressure p2 will have its
adius decreased by the amount

Dr 5 2
rp2

Es

(1 2 m)

In the case of a press or shrink fit, p1 5 p2 5 p. The sum of Dr1 and
r1 absolute is the radial interference; twice this sum is the diametral

nterference D or

D 5 2r1 pF 1

Eh
S1 1 r2

1 /r2
2

1 2 r2
1 /r2

2

1 mD 1
1 2 m

Es
G

f the hub and shaft materials are the same, Eh 5 Es 5 E, and

D 5
4r1r2

2 p

E (r2
2 2 r2

1)

f the equation is solved for p and this value is substituted in Lamé’s
quation, the maximum tangential stress on the inner surface of the hub
s found to be

St 5
ED

4r1r2
2

(r2
2 1 r2

1)
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PRESSURE BETWEEN BODIES
WITH CURVED SURFACES

(See Hertz, ‘‘Gesammelte Werke,’’ vol. 1, pp. 159 et seq., Barth.)

Two Spheres The radius A of the compressed area is obtained from
the formula A3 5 0.68P(c1 1 c2)/(1/r1 1 1/r2), in which P is the com-
pressing force, c1 and c2 (5 1/E1 and 1/E2) are reciprocals of the re-
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Fig. 5.2.67

EXAMPLE. The barrel of a field gun has an outside diameter of 9 in and a bore
of 4.7 in. An internal pressure of 16,000 lb/in2 is developed during firing. What
maximum stress occurs in the barrel? An investigation of Lamé’s equations for
internal pressure reveals the maximum stress to be the tangential one on the inner
surface. Thus,

St 5 p1

r2
1 1 r2

2

r2
2 2 r2

1

5
16,000 (2.352 1 4.52)

4.52 2 2.352

5 28,000 lb/in2 (1,972 kgf/cm2)

Oval Hollow Cylinders In Fig. 5.2.68, let a and b be the semiminor
and semimajor axes. The bending moments at A and C will then be

M0 5 pa2/2 2 pIx /(2S) 2 pIy /(2S)
M1 5 M0 2 p(a2 2 b2)/2

where Ix and Iy are the moments of inertia of the arc AC about the x and y
axes, respectively. The bending moment at any point will be

M 5 M0 2 pa2/2 1 px2/2 1 py2/2

Thick Hollow Spheres With an internal pressure p, where p ,
T/0.65.

r2 5 r1[(T 1 0.4p)/(T 2 0.65p)]1/3

The maximum tensile stress is on the inner surface, in the direction of
the circumference. With an external pressure p, where p , T/1.05,

r2 5 r1[T/(T 2 1.05p)]1/3

In both cases T is the true stress.

Fig. 5.2.68
spective moduli of elasticity, and r1 and r2 are the radii. (Reciprocal of
Poisson’s ratio is assumed to be n 5 10/3.) The greatest contact pressure
in the middle of the compressed surface will be Smax 5 1.5(P/pA2), and

S3
max 5 0.235P(1/r1 1 1/r2)2/(c1 1 c2)2

The total deformation of the two spheres will be Y, which is obtained
from

Y 3 5 0.46P2(c1 1 c2)2(1/r1 1 1/r2)

For c1 5 c2 5 1/E, i.e., two spheres with the same modulus of elasticity, it
follows that A3 5 1.36 P/E(1/r1 1 1/r2), S3

max 5 0.059PE2(1/r1 1
1/r2)2, and Y 3 5 1.84P2(1/r1 1 1/r2)/E2. If the radii of these spheres are
also equal, A3 5 0.68Pr/E 5 0.34Pd/E; S3

max 5 0.235PE2/r2 5
0.94PE2/d2; and Y 3 5 3.68P2/(E2r) 5 7.36P2/(E2d).

Sphere and Flat Plate In this case r1 5 r and r2 5 `, and the above
formulas become A3 5 0.68Pr(c1 1 c2) 5 1.36Pr/E, and

S3
max 5 0.235P/[r2(c1 1 c2)2] 5 0.059PE2/r2

Y 3 5 0.46P2(c1 1 c2)2/r 5 1.84P2/(E2r)

Two Cylinders The width b of the rectangular pressure surface is
obtained from (b/4)2 5 0.29P(c1 1 c2)/l [(1/r1) 1 (1/r2)], where r1 and
r2 are the radii, and l the length

S2
max 5 [4P/(pbl)]2 5 0.35P(1/r1 1 1/r2)/l(c1 1 c2)]

For cylinders with the same moduli of elasticity, c1 5 c2 5 1/E, and
(b/4)2 5 0.58P/El[(1/r1) 1 (1/r2)]; and S2

max 5 0.175PE(1/r1 1 1/r2)/l.
When r1 5 r2 5 r, (b/4)2 5 0.29Pr/(El ), and S2

max 5 0.35PE/(lr).
Cylinder and Flat Plate Here r1 5 r, r2 5 `, and the above formulas

reduce to (b/4)2 5 0.29Pr(c1 1 c2)/l 5 0.58Pr/(El ), and

S2
max 5 0.35P/[lr(c1 1 c2)] 5 0.175PE/(lr)

For application to ball and roller bearings and to gear teeth, see Sec. 8.

FLAT PLATES

The analysis of flat plates subjected to lateral loads is very involved
because plates bend in all vertical planes. Strict mathematical deriva-
tions have therefore been accomplished only in some special cases.
Most of the available formulas contain some amount of rational empiri-
cism. Plates may be classified as (1) thick plates, in which transverse
shear is important; (2) average-thickness plates, in which flexure stress
predominates; (3) thin plates, which depend in part upon direct tension;
and (4) membranes, which are subject to direct tension only. However,
exact lines of demarcation do not exist.

The flat-plate formulas given apply primarily to symmetrically
loaded average-thickness plates of constant thickness. They are valid only
if the maximum deflection is small relative to the plate thickness; usu-
ally, y # 0.4t. In the mathematical analyses, allowance for stress redis-
tribution, because of slight local yielding, is usually not made. Since this
yielding, especially in ductile materials, is beneficial, the formulas gen-
erally err on the side of safety. Certain cases of symmetrically loaded
circular and rectangular plates are presented in Figs. 5.2.69 and 5.2.70.
The maximum stresses are calculated from

SM 5 k
w R2

t2
SM 5 k

P

t2
or SM 5 k

C

t2

The first equation is for a uniformly distributed load w, lb/in2; the
second supports a concentrated load P, lb; and the third a couple C, per
unit length, uniformly distributed along the edge. Combinations of these
loadings may be treated by superposition. The factors k and k1 are given
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Table 5.2.19 Coefficients k and k1 for Circular Plates
(m 5 0.3)

Case k k1

1 1.24 0.696
2 0.75 0.171
3 6.0 4.2

R/r

1.25 1.5 2 3 4 5

Case k k1 k k1 k k1 k k1 k k1 k k1

4 0.592 0.184 0.976 0.414 1.440 0.664 1.880 0.824 2.08 0.830 2.19 0.813
5 0.105 0.0025 0.259 0.0129 0.481 0.057 0.654 0.130 0.708 0.163 0.730 0.176
6 1.10 0.341 1.26 0.519 1.48 0.672 1.88 0.734 2.17 0.724 2.34 0.704
7 0.195 0.0036 0.320 0.024 0.455 0.081 0.670 0.171 1.00 0.218 1.30 0.238
8 0.660 0.202 1.19 0.491 2.04 0.902 3.34 1.220 4.30 1.300 5.10 1.310
9 0.135 0.0023 0.410 0.0183 1.04 0.0938 2.15 0.293 2.99 0.448 3.69 0.564

10 0.122 0.00343 0.336 0.0313 0.740 0.1250 1.21 0.291 1.45 0.417 1.59 0.492
11 0.072 0.00068 0.1825 0.005 0.361 0.023 0.546 0.064 0.627 0.092 0.668 0.112
12 6.865 0.2323 7.448 0.6613 8.136 1.493 8.71 2.555 8.930 3.105 9.036 3.418
13 6.0 0.196 6.0 0.485 6.0 0.847 6.0 0.940 6.0 0.801 6.0 0.658
14 0.115 0.00129 0.220 0.0064 0.405 0.0237 0.703 0.062 0.933 0.092 1.13 0.114
15 0.090 0.00077 0.273 0.0062 0.710 0.0329 1.54 0.110 2.23 0.179 2.80 0.234

in Tables 5.2.19 and 5.2.20; R is the radius of circular plates or one side
of rectangular plates, and t is the plate thickness.
[In Figs. 5.2.69 and 5.2.70, r 5 R for circular plates and r 5 smaller side
rectangular plates.]

The maximum deflection for the same cases is given by

yM 5 k1

wR4

Et3
yM 5 k1

PR2

Et3
and yM 5 k1

CR2

Et3
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The factors k1 are also given in the tables. For additional information,
including shells, refer to ASME Handbook, ‘‘Metals Engineering: De-
sign,’’ McGraw-Hill.

Fig. 5.2.69 Circular plates. Cases (4), (5), (6), (7), (8), and (13) have central
hole of radius r; cases (9), (10), (11), (12), (14), and (15) have a central piston of
radius r to which the plate is fixed.

THEORIES OF FAILURE

Material properties are usually determined from tests in which speci-
mens are subjected to simple stresses under static or fluctuating loads.
The attempt to apply these data to bi- or triaxial stress fields has resulted
Fig. 5.2.70 Rectangular and elliptical plates. [R is the longer dimension except
in cases (21) and (23).]

in the proposal of various theories of failure. Figure 5.2.71 shows the
principal stresses on a triaxially stressed element. It is assumed, for
simplicity, that S1 . S2 . S3 . Compressive stresses are negative.

1. Maximum-stress theory (Rankine) assumes failure occurs when the
largest principal stress reaches the yield stress in a tension (or compres-
sion) specimen. That is, S1 5 6 Sy .

2. Maximum-shear theory (Coulomb) assumes yielding (failure)
occurs when the maximum shearing stress equals that in a simple ten-
sion (or compression) specimen at yield. Mathematically, S1 2 S3 5
6 Sy .

3. Maximum-strain-energy theory (Beltrami) assumes failure occurs
when the energy absorbed per unit volume equals the strain energy per
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Table 5.2.20 Coefficients k and k1 for Rectangular and Elliptical Plates
(m 5 0.3)

R/r

1.0 1.5 2.0 3.0 4.0

Case k k1 k k1 k k1 k k1 k k1

16 0.287 0.0443 0.487 0.0843 0.610 0.1106 0.713 0.1336 0.741 0.1400
17 0.308 0.0138 0.454 0.0240 0.497 0.0277 0.500 0.028 0.500 0.028
18 0.672 0.140 0.768 0.160 0.792 0.165 0.798 0.166 0.800 0.166
19 0.500 0.030 0.670 0.070 0.730 0.101 0.750 0.132 0.750 0.139
20 0.418 0.0209 0.626 0.0582 0.715 0.0987 0.750 0.1276 0.750
21* 0.418 0.0216 0.490 0.0270 0.497 0.0284 0.500 0.0284 0.500 0.0284
22 0.160 0.0221 0.260 0.0421 0.320 0.0553 0.370 0.0668 0.380 0.0700
23* 0.160 0.0220 0.260 0.0436 0.340 0.0592 0.430 0.0772 0.490 0.0908
24 1.24 0.70 1.92 1.26 2.26 1.58 2.60 1.88 2.78 2.02
25 0.75 0.171 1.34 0.304 1.63 0.379 1.84 0.419 1.90 0.431

* Length ratio is r/R in cases 21 and 23.

unit volume in a tension (or compression) specimen at yield. Mathemat-
ically, S2

1 1 S2
2 1 S2

3 2 2m(S1S2 1 S2S3 1 S3S1) 5 S2
y .

4. Maximum-distortion-energy theory (Huber, von Mises, Hencky) as-
sumes yielding occurs when the distortion energy equals that in simple
tension at yield. The distortion energy, that portion of the total energy
which causes distortion rather than volume change, is

1 1 m
2 2 2

above holds for fluctuating stresses, provided that principal stresses at the
maximum load are used and the endurance strength in simple bending is
substituted for the yield strength.

EXAMPLE. A steel shaft, 4 in in diameter, is subjected to a bending moment
of 120,000 in ? lb, as well as a torque. If the yield strength in tension is 40,000
lb/in2, what maximum torque can be applied under the (1) maximum-shear theory
and (2) the distortion-energy theory?

Copyright (C) 1999 by The McGraw-Hill Companies, Inc.  All rights reserved.  Use of
this product is subject to the terms of its License Agreement.   Click here to view.
Ud 5
3E

(S1 1 S2 1 S3 2 S1S2 2 S2S3 2 S3S1)

Thus failure is defined by

S2
1 1 S2

2 1 S2
3 2 (S1S2 1 S2S3 1 S3S1) 5 S2

y

5. Maximum-strain theory (Saint-Venant) claims failure occurs when
the maximum strain equals the strain in simple tension at yield or S1 2
m(S2 1 S3) 5 Sy .

6. Internal-friction theory (Mohr). When the ultimate strengths in ten-
sion and compression are the same, this theory reduces to that of maxi-
mum shear. For principal stresses of opposite sign, failure is defined by
S1 2 (Suc /Su ) S2 5 2 Suc ; if the signs are the same S1 5 Su or 2 Suc ,
where Suc is the ultimate strength in compression. If the principal
stresses are both either tension or compression, then the larger one, say
S1 , must equal Su when S1 is tension or Suc when S1 is compression.

A graphical representation of the first four theories applied to a biaxial
stress field is presented in Fig. 5.2.72. Stresses outside the bounding
lines in the case of each theory mean failure (yield or fracture). A
comparison with experimental data proves the distortion-energy theory
(4) best for ductile materials of equal tension-compression properties.
When these properties are unequal, the internal friction theory (6) ap-
pears best. In practice, judging by some accepted codes, the maximum-

Fig. 5.2.71 Fig. 5.2.72

shear theory (2) is generally used for ductile materials, and the maxi-
mum-stress theory (1) for brittle materials.

Fatigue failures cannot be related, theoretically, to elastic strength
and thus to the theories described. However, experimental results justify
this, at least to a limited extent. Therefore, the theory evaluation given
Sx 5
Mc

I
5

120,000 3 2

12.55

5 19,100 lb/in2 Sxy 5
TC

J
5

T 3 2

25.1
5 0.0798T

and SM,m 5
Sx

2
6 √SSx

2D2

1 S2
xy

SM 2 Sm 5 Sy or 2 √S19,100

2 D2

1 (0.0798T)2 (1)

5 (40,000)2

or T 5 221,000 in ? lb (254,150 cm ? kgf)
S2

M 1 S2
m 2 SMSm 5 S2

y (2)

substituting and simplifying,

(9,550)2 1 3 √S19,100

2 D2

1 (0.0798T )2 5 (40,000)2

or T 5 255,000 in ? lb (293,250 cm ? kgf )

PLASTICITY

The reaction of materials to stress and strain in the plastic range is not
fully defined. However, some concepts and theories have been pro-
posed.

Ideally, a purely elastic material is one complying explicitly with
Hooke’s law. In a viscous material, the shearing stress is proportional to
the shearing strain. The purely plastic material yields indefinitely, but
only after reaching a certain stress. Combinations of these are the elasto-
viscous and the elastoplastic materials.

Engineering materials are not ideal, but usually contain some of the
elastoplastic characteristics. The total strain «t is the sum of the elastic
strain «o plus the plastic strain «p , as shown in Fig. 5.2.73, where the
stress-strain curve is approximated by two straight lines. The natural

strain, which is at the same time the total strain, is « 5 El

lo

dl /l 5

ln (l /lo ). In this equation, l is the instantaneous length, while lo is the
original length. In terms of the normal strain, the natural strain becomes
« 5 ln(1 1 «o ). Since it is assumed that the volume remains constant,
l/lo 5 Ao /A, and so the natural stress becomes S 5 P/A 5 (P/Ao )(1 1
«o ). Ao is the original cross-sectional area. If the natural stress is plotted
against strain on log-log paper, the graph is very nearly a straight line.
The plastic-range relation is thus approximated by S 5 K«n, where the
proportionality factor K and the strain-hardening coefficient n are deter-
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mined from best fits to experimental data. Values of K and n determined
by Low and Garofalo (Proc. Soc. Exp. Stress Anal., vol. IV, no. 2, 1947)
are given in Table 5.2.21.

and «3 5
Se

(12n)/n

K1/n S2
3

4
S1D 5 2 «1

The maximum-shear theory, which is applicable to a ductile material under com-
bined stress, is acceptable here. Thus rupture will occur at

S1 2 S3 5 Su, and

Se 5 √1 FSS1D2

1SS1D2

1 S1
2G 5 √3

S1
2 5S3D1/2

Su

M

tm

d t
we

Copyright (C) 1999 by The McGraw-Hill Companies, Inc.  All rights reserved.  Use of
this product is subject to the terms of its License Agreement.   Click here to view.
Fig. 5.2.73

The geometry of Fig. 5.2.73 can be used to arrive at a second approx-
imate relation

S 5 So 1 («p 2 «o ) tan u 5 SoS1 2
H

ED 1 «p H

where H 5 tan u is a kind of plastic modulus.
The deformation theory of plastic flow for the general case of combined

stress is developed using the above concepts. Certain additional as-
sumptions involved include: principal plastic-strain directions are the
same as principal stress directions; the elastic strain is negligible com-
pared to plastic strain; and the ratios of the three principal shearing
strains—(«1 2 «2), («2 2 «3), («3 2 «1)—to the principal shearing
stresses—(S1 2 S2)/2, (S2 2 S3)/2, (S3 2 S1)/2—are equal. The rela-
tions between the principal strains and stresses in terms of the simple
tension quantities become

«1 5 «/S[S1 2 (S2 1 S3)/2]
«2 5 «/S[S2 2 (S3 1 S1)/2]
«3 5 «/S[S3 2 (S1 1 S2)/2]

If these equations are added, the plastic-flow theory is expressed:

S

«
5 √[(S1 2 S2)2 1 (S2 2 S3)2 1 (S3 2 S1)2]/2

2(«2
1 1 «2

2 1 «2
3)/3

In the above equation

√[(S1 2 S2)2 1 (S2 2 S3)2 1 (S3 2 S1)2]/2 5 Se

and √2(«2
1 1 «2

2 1 «2
3)/3 5 «e

are the effective, or significant, stress and strain, respectively,

EXAMPLE. An annealed, stainless-steel type 430 tank has a 41-in inside di-
ameter and has a wall 0.375 in thick. The ultimate strength of the stainless steel is
85,000 lb/in2. Compute the maximum strain as well as the pressure at fracture.

The tank constitutes a biaxial stress field where S1 5 pd/(2t), S2 5 pd/(4t), and
S3 5 0. Taking the power stress-strain relation

Se 5 K« e
n or «/S 5 Se

(12n)/n/K1/n

thus «1 5
Se

(12n)/n

K1/n S3

4
S1D« 5 0,

Table 5.2.21 Constants K and n for Sheet

Material Trea

0.05%C rimmed steel Annealed
0.05%C killed steel Annealed an
Decarburized 0.05%C steel Annealed in
0.05/0.07% phos. low C Annealed
SAE 4130 Annealed

SAE 4130 Normalized an
Type 430 stainless Annealed
Alcoa 24-S Annealed
Reynolds R-301 Annealed
2 2 2 4 4

«1 5
[(3/4)1/2Su](12n)/n

K1/n S3

4
SuD 5S3

4D110.229/0.458S 85,000

143,000D1/0.229

5 0.0475 in/in (0.0475 cm/cm)

Since Su 5 S1 5
pd

2t
, then p 5

2tSu

d

or p 5
2 3 0.375 3 85,000

41
5 1,550 lb/in2 (109 kgf/cm2)

ROTATING DISKS

Rotating circular disks may be of various profiles, of constant or vari-
able thickness, with or without centrally and noncentrally located holes,
and with radial, tangential, and shearing stresses.

Solution starts with the differential equations of equilibrium and
compatibility and the subsequent application of appropriate boundary
conditions for the derivation of working-stress equations.

If the disk thickness is small compared with the diameter, the varia-
tion of stress with thickness can be assumed to be negligible, and sym-
metry eliminates the shearing stress. In the rotating case, the disk weight
is neglected, but its inertia force becomes the body-force term in the
equilibrium equations.

Thus solved, the stress components in a solid disk become

sr 5
3 1 m

8
rv2(R2 2 r2)

su 5
3 1 m

8
rv2R2 2

1 1 3m

8
rv2r2

where m 5 Poisson’s ratio; r 5 mass density, lb ? s2/in4; v 5 angular
speed, rad/s; R 5 outside disk radius; and r 5 radius to point in ques-
tion.

The largest stresses occur at the center of the solid disk and are

sr 5 su 5
3 1 m

8
rv2R2

A disk with a central hole of radius rh (no external forces) is subjected
to the following stresses:

sr 5
3 1 m

8
rv2SR2 1 r2

h 2
R2r2

h

r2
2 r2D

su 5
3 1 m

8
rv2SR2 1 r2

h 1
R2r2

h

r2
2

1 1 3m

3 1 m
r2D

The maximum radial stress sr|M occurs at r 5 √Rrh, and

sr|M 5
3 1 m

8
rv2(R 2 rh )2

aterials

ent K, lb/in2 n

77,100 0.261
empered 73,100 0.234
t H2 75,500 0.284

93,330 0.156
169,400 0.118
d tempered 154,500 0.156
143,000 0.229
55,900 0.211
48,450 0.211
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The largest tangential stress su |M exists at the inner boundary, and

su |M 5
3 1 m

4
rv2SR2 1

1 2 m

3 1 m
r2

hD
As the hole radius rh approaches zero, the tangential stress assumes a
value twice that at the center of a rotating solid disk, given above.

other property is changing rapidly. In cases of sudden or abrupt section
changes, it is best to fair in across the change; the material density
should, however, be adjusted to give a total mass equal to the actual. Six
to ten stations are often sufficient.

The modulus of elasticity has a significant effect, and its exact value
at the temperature of each station should be used. The coefficients of
thermal expansion are usually averaged for the temperature between the
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Stresses in Turbine Disks Explicit solutions for cases other than
those cited are not available; so approximate solutions, such as those
proposed by Stodola, Thomson, Hetényi, and Robinson, are necessary.
Manson uses the calculus of finite differences. See commentary under
previous discussion of torsion for alternate methods of approximate
solution. The problem illustrated below is a prime example of the ele-
gance of the combination of approximate methods and electronic com-
puters, which allow a rapid solution to be obtained. The speed with
which the repetitive calculations are done allows equally rapid solutions
with changes in design variables.

The customary, simplifying assumptions of axial symmetry—no
variation of stress in the thickness direction and a completely elastic
stress situation—are made. The differential equations of equilibrium
and comparibility are rewritten in finite-difference form.

Solution of the finite-difference equations, appreciation of their linear
nature, and successive application of them yield the stresses at any
station in terms of those at a boundary station such as r0 . The equations
thus derived are

sr,n 5 Ar,nst,r0
1 Br,n

st,n 5 At,nst,r0
1 Bt,n

(5.2.1)

The finite-difference expressions yield Eqs. (5.2.2), which permit the
coefficients at station n to be computed from those at station n 2 1.

Ar,n 5 KnAr,n21 1 LnAt,n21

At,n 5 K 9nAr,n21 1 L9nAt,n21 (5.2.2)Br,n 5 KnBr,n21 1 LnBt,n21 1 Mn

Bt,n 5 K 9nBr,n21 1 L9nBt,n21 1 M9n

The coefficients at the first station can be established by inspection.
For a solid disk, for instance, where both stresses are equal to the tan-
gential stress at the center, the coefficients in Eqs. (5.2.1) are Ar,n 5
At,n 5 1 and Br,n 5 Bt,n 5 0. In the case of the disk with a central hole,
where sr,rh 5 0, Ar,rh 5 Br,rh 5 Bt,rh 5 0 and At,rl 5 1. Knowing
these, all others can be found from Eqs. (5.2.2).

At the outer boundary, sr,R 5 Ar,Rst,r0
1 Br,R and st,r0

5 (sr,R 2
Br,R)/Ar,R. The radial and tangential stresses at each station are succes-
sively obtained, knowing st,r0

and all the coefficients, using Eqs. (5.2.1).
The remaining coefficients in Eqs. (5.2.2), extracted from the finite-

difference equations, are defined below, where E is Young’s modulus at
the temperature of the point in question, h is the profile thickness, a is
the thermal coefficient of expansion, DT is the temperature increment
above that at which the thermal stress is zero, m is Poisson’s ratio, v is
angular velocity of disk, and r is the mass density of disk material.

Cn 5 rn /hn

C 9n 5 mn /En 1 (1 1 mn )(rn 2 rn21)/(2Enrn )
Dn 5 1⁄2(rn 2 rn21)hn

D9n 5 1/En 1 (1 1 mn)(rn 2 rn21)/(2Enrn )
Fn 5 rn21hn21

F 9n 5 (mn21 /En21) 2 (1 1 mn21) (rn 2 rn21)/(2En21rn21)
Gn 5 1⁄2 (rn 2 rn21)hn21

G9n 5 (1/En21) 2 (1 1 mn21)(rn 2 rn21)/(2En21rn21)
Hn 5 1⁄2v2(rn 2 rn21)(rnhnr2

n 1 rn21hn21r2
n21)

H9n 5 anDTn 2 an21 DTn21

Kn 5 (F 9nDn 2 FnD9n)/(C 9nDn 2 CnD9n)
K 9n 5 (CnF 9n 2 C 9nFn)/(C 9nDn 2 CnD9n )
Ln 5 2 (G 9nDn 1 GnD9n )/(C 9nDn 2 CnD9n )
L 9n 5 2 (C 9nGn 1 CnG9n)/(C 9nDn 2 CnD9n)
Mn 5 (H9nDn 1 HnD9n )/(C 9nDn 2 CnD9n )
M9n 5 (C9nHn 1 CnH9n )/(C 9nDn 2 CnD9n )

Situations need not be equally spaced between the two boundaries. It
is best to space them more closely where the profile, temperature, or
station and at which no thermal stress occurs.
The first two Eqs. (5.2.2) and the last two must be worked simulta-

neously.
At the outer boundary, loads external to the disk may be imposed,

e.g., the radial stress sr,R from the centrifuged pull of a bucket. At the
center, the disk may be shrunk on a shaft with the fit pressures causing a
radial external push at this boundary.

Numerical solutions are most expeditiously accomplished by use of a
table with column-to-column procedures. This technique lends itself
readily to programmable computers or calculators.

Disks with Noncentral Holes This case has not been solved explic-
itly, but approximations are useful (e.g., Armstrong, Stresses in Rotat-
ing Tapered Disks with Noncentral Holes, Ph.D. dissertation, Iowa
State University, 1960). The area between the holes is considered re-
moved and replaced by uniform spokes, each one with a cross-sectional
area equal to the original minimum spoke area and with a length equal
to the diameter of the noncentral holes. The higher stress in such a spoke
results in an additional extension, which is then applied to the outer
annulus according to thin-ring theory and based on the average radius of
the ring. The additional stress is considered constant and is added to the
tangential stress which would be present in a disk of the same dimen-
sions but filled (that is, no noncentral holes).

The stress in the substitute spoke is computed by adjusting the stress
at the hole-center radius in the solid or filled disk in proportion to the
areas, or Ssp 5 sr,h(Ag/Asp), where sr,h is the radial stress in the filled
disk at the radius of the hole circle, Ag is the gross circumferential area
at the same radius of the filled disk, and Asp is the area of the substitute
spoke. The increase in total strain is d 5 sr,h /[E(Ag/Asp 2 1)lsp ], where
lsp is the length of the substitute spoke.

The spoke-effect correction to be applied to the tangential stress is
therefore suc 5 dE/r 9, where r 9 is the average outer-rim or annulus
radius. This is added to the tangential stress found at the corresponding
radius in the filled disk. The final step is to adjust the tangential and
radial stresses as determined for stress concentrations caused by the
holes in the actual disk. The factors for this adjustment are those in an
infinite plate of uniform thickness having the same size hole. The
method is claimed to yield stresses within 5 percent of those measured
photoelastically at points of highest stress.

EXPERIMENTAL STRESS ANALYSIS

Analytical methods of stress analysis can reach limits of applicability.
Many experimental techniques have been suggested and tried; several
have been developed to a state of great usefulness, e.g., photoelasticity,
strain-gage measurement, brittle coating, birefringent coating, and ho-
lography.

Photoelasticity

Most transparent materials exhibit temporary double refraction, or bire-
fringence, when stressed. Light is resolved into components along the
two principal plane directions. The effect is temporary as long as the
elastic stress is not exceeded and is in direct proportion to the applied
load. The stress magnitude can be established by the amount of compo-
nent wave retardation, as given in the white and black band field (fringe
pattern) obtained when a monochromatic light source is used. The po-
lariscope, consisting of the light source, the polarizer, the model in a
loading frame, an analyzer (same as polarizer), and a screen or camera,
is used to produce and evaluate the fringe effect. Quarter-wave plates
may be placed on either side of the model, making the light components
through the model independent of the absolute orientation of polarizer
and analyzer. The polarizer is a plane polariscope and yields the direc-
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tions of principal stresses (the isoclinics); the analyzer is a circular
polariscope yielding the fringes (isochromatics) as well.

Figure 5.2.74 shows the fringe pattern and the 20° isoclinics of a disk
loaded radially at four places.

The isochromatics in the fringe pattern depict the difference between
principal stresses. At free boundaries where the normal stress is zero,

pal planes at each point, two families of orthogonal curves are drawn.
Care must be exercised in the drawing of trajectories for practical accu-
racy.

Stress Separation If knowledge of each principal stress is required,
the photoelastic data must be treated to separate the stresses from the
difference given by the data. If the sum of the two stresses is also
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the difference automatically becomes the tangential stress. Starting at
such a boundary and proceeding into the interior, the stresses can be
separated by numerical calculation.

Fig. 5.2.74

The Stress-Optic Law In a transparent, isotropic plate subjected to
a biaxial stress field within the elastic limit, the relative retardation Rt

between the two components produced by temporary double refraction
is Rt 5 Ct( p 2 q) 5 nl, where C is the stress-optic coefficient, t is the
plate thickness, p and q are the principal stresses, n is the fringe order
(the number of fringes which have passed the point during application
of load), and l is the wavelength of monochromatic light used. Thus,

( p 2 q)/2 5 t|M 5 nl/(2Ct) 5 nf/t

If the material-fringe value f is determined with the same light source
(generally a mercury-vapor lamp emitting light having a wavelength of
5,461 Å) as used in the model study, the maximum shearing stress, or
one-half the difference between the principal stresses, is directly deter-
mined. The calibration is a matter of obtaining the material-fringe value
in lb/in2 per fringe per inch (kgf/cm2 per fringe per cm).

Isoclinics, or the direction of the principal planes, can be obtained with
a plane polariscope. A new isoclinic parameter is observed each time
the polarizer and analyzer are rotated simultaneously into a new posi-
tion. A white-light source reveals a more distinct isoclinic, as the black
curve is more distinguishable against a colored background.

Isostatics, or stress trajectories, are curves the tangents to which rep-
resent the progressive change in principal-plane directions. They are
constructed graphically using the isoclinics. Since there are two princi-
obtained somehow, a simultaneous solution of the sum and difference
values will yield each principal stress. One can also start at a boundary
where the normal stress value is zero. There, the photoelastic reading
gives the principal stress parallel to the boundary. Starting with the
single value, methods have been developed which can be used to pro-
ceed with the separation. Typical of the former are lateral-extensometer,
iteration, and membrane-analogy techniques; typical of the latter are the
slope-equilibrium, shear-difference, graphical-integration, alternating-
summation methods, and oblique incidence. Often, however, the sur-
face stresses are the maximum valued ones. (See Frocht, ‘‘Photoeleas-
ticity,’’ McGraw-Hill.)

EXAMPLE. The fringe pattern of a Homalite disk 1.31 in in diam, 0.282 in
thick, and carrying four radial loads of 155 lb each is shown in Fig. 5.2.74.

A closed solution is not known. However, by counting the fringe order at any
point, the stress can be determined photoelastically. For instance, the dark spot at
the center marks a fringe of zero order, as do the disk edges except in the immedi-
ate vicinity of the concentrated loads. The point at the center, which remained dark
throughout the loading, is an isotropic point (zero stress difference and normal
stresses are equal in all directions). Counting out from the center toward the load,
the first ‘‘circular’’ fringe is of order 3. Therefore, anywhere along it ( p 2 q)/2 5
t |M 5 nf/t 5 3 3 65/0.282 5 692 lb/in2 (49 kgf/cm2). Carefully inspected, fringe
12 can be counted at the point of load application. Therefore, r |M 5 12 3
65/0.282 5 2,770 lb/in2 (195 kgf/cm2).

THREE-DIMENSIONAL PHOTOELASTICITY

Stress ‘‘freezing’’ and slicing, wherein a plastic model is brought up to
its critical temperature, loaded as desired, and while loaded, slowly
brought back to room temperature, are techniques which freeze the
fringe pattern into the model. The model can be cut into slices without
disturbing the ‘‘frozen’’ strains. Two-dimensional models are usually
machined from plate stock, and three-dimensional models are cast. The
frozen stress model is sliced so that the desired information can be
obtained by normal incidence using the previous formulations.

When normal incidence is not possible, oblique incidence becomes
necessary. Oblique-incidence patterns are usable in two-dimensional as
well as three-dimensional stress separation. The measurement of frac-
tional fringes is often required when using oblique incidence. With a
crossed, circular, monochromatic polariscope, oriented to the principal
stresses at a point, the analyzer is rotated through some angle f until
extinction occurs. The fringe value n is n 5 nn 6 f/180, where nn is the
order of the last visible fringe. Whether the fractional term is added or
subtracted depends upon the direction in which the analyzer is rotated
(established by inspection).

Fig. 5.2.75

Oblique-incidence calculations are based on the stress-optic law:
nn 5 R1 5 t( p 2 q)/f 5 tp/f 2 tg/f 5 np 2 nq . Also, when polarized light
is directed through the slice at an angle ux to a principal plane, either by
rotating the slice away from normal to the light ray or by cutting it at the
angle ux (see Fig. 5.2.75), the fringe order becomes

nux 5
t9

f
( p9 2 q9 ) 5

t

f cos ux

( p 2 q cos2 ux )

5 (np 2 nq cos2 ux)/cos ux
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Solving algebraically,

np 5 (nux
cos ux 2 nn cos2 ux )/sin2 ux

and nq 5 (nux cos ux 2 nn )/sin2 ux

If orders nn and nux are thus measured at a point, np and nq can be
computed. The principal stresses are then determined from p 5 fnp/t and

containing the ‘‘active’’ gage, the electric-resistance temperature effect
is canceled out. Thus the active gage reports only that which is taking
place in the stressed plate. The power supply can be either ac or dc.

It is sometimes useful to make both gages active—e.g., mounted on
opposite sides of a beam, with one gage subjected to tension and the
other to compression. Temperature effects are still compensated, but the
bridge output is doubled. In other instances, it may be desirable to make
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q 5 fnq /t.
The material-fringe value f in these equations is at the ‘‘freezing’’

temperature (critical temperature). The angle of incidence, as well as the
fringe orders, must be accurately measured if errors are to be mini-
mized.

Bonded Metallic Gages

Strain measurements down to one-millionth inch per inch (one-mil-
lionth cm/cm) are possible with electrical-resistance wire gages. Such
gages can be used to measure surface strains (stress by Hooke’s law) on
any shape or size of object. Figure 5.2.76 illustrates schematically the
gage construction with a grid of fine alloy wire or thin foil, bonded to
paper and covered for protection with a felt pad. In use, the gage is
cemented rigidly to the surface of the member to be analyzed. The strain
relation is « 5 (DR/R)(1/Gf ) in/in (cm/cm). Thus, if the resistance R
and gage factor Gf (given by the gage manufacturer) are known and the
change in resistance DR is measured, the strain which caused the resist-
ance change can be determined and Hooke’s law can be applied to
determine the stress.

Fig. 5.2.76

Gages must be properly selected in accordance with manufacturer’s
recommendations. The surface to which the gage is applied must be
clean, the proper cement must be used, and the gage assembly must be
coated for protection against environmental conditions (e.g., moisture).

A gaging unit, usually a Wheatstone bridge or a ballast circuit (see
Fig. 5.2.77 and Sec. 15), is needed to detect the signal resulting from the
change in resistance of the strain gage. The strain and, therefore, the
signal are often too small for direct handling, so that amplification is
needed, with a metering discriminator for magnitude evaluation.

The signal is read or recorded by a galvanometer, oscilloscope, or
other device. Equipment specifically constructed for strain measure-
ment is available to indicate or record the signal directly in strain units.

Static strains are best gaged on a Wheatstone bridge, with strain gages
wired to it as indicated in Fig. 5.2.77a. With the bridge set so that the
only unbalance is the change of resistance in the active-strain gage, the
potential difference between the output terminals becomes a measure-
ment of strain. Since the gage is sensitive to temperature as well as
strain, it will measure the combined effect. However, if a ‘‘dummy’’
gage, cemented to an unstressed piece of the same metal subjected to the
same climatic conditions, is wired into the bridge leg adjacent to the one
all four bridge arms active gages. The experimenter must determine the
most practical arrangement for the problem at hand and must bear in
mind that the bridge unbalances in proportion to the difference in the
strains of gages located in adjacent legs and to the sum of strain in gages
located in opposite legs.

Fig. 5.2.77

Dynamic strains can be detected using circuits such as the ballast type
shown in Fig. 5.2.77b. The capacitor coupling passes only rapidly vary-
ing or dynamic strains. The capacitor’s infinite impedance to a steady
voltage filters out any static effects or strains. The circuit is dc powered.

Transverse Sensitivity Grid-type gages possess some strain sensi-
tivity in the direction perpendicular to the gage axis. In a uniaxial stress
field, this transverse sensitivity is of no concern because the gage factor
was obtained in such a field. However, in a biaxial stress field, neglect
of transverse sensitivity will give slightly erroneous strains. When ac-
counted for, the true strains in the axial direction of gage, «1 , and at
right angles to it, «2 , are «1 5 (1 2 mk)(«a1 2 k«a2)/(1 2 k2) and «2 5
(1 2 mk)(«a2 2 k«a1)/(1 2 k2), where the apparent strains are «a1 5
DR1/(RGf ) and «a2 5 DR2/(RGf ,), measured by cementing a gage in
each direction 1 and 2. The factor m is Poisson’s ratio of the material to
which gages are cemented, and k (usually provided by the gage manu-
facturer) is the coefficient of transverse sensitivity of the gage. The gage
is cemented to the test piece, a uniaxial stress is applied in its axial
direction, and the resistance change and strain are measured. The gage
factor G1 5 DR1/(R«1) is computed. A uniaxial stress is next applied
transversely to the gage. Again the resistance change and strain are
measured and G2 computed. Then k 5 (G2 1 mG1)/(G1 1 mG2).

Strain Rosettes In a general biaxial stress field, the principal plane
directions, as well as the stresses, are unknown. Thus, three gages
mounted in three differing directions are needed if the three unknowns
are to be determined. Three standard gage combinations, called strain
rosettes, are commercially available and are best for the purpose. These
are the rectangular strain rosette (Fig. 5.2.78a), which covers a mini-
mum of area and is therefore best where the strain gradient is high; the
equiangular strain rosette (Fig. 5.2.78b), where the gages do not over-
lap and which can be used where the strain gradient is low; the T-delta
strain rosette (Fig. 5.2.78c), which occupies no more area than the
equiangular rosette and which provides an extra check, or ‘‘insurance’’
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Fig. 5.2.78

gage. The wiring and instrumentation of gages in rosettes do not differ
from those of individual gages.

The true strains along the gage-length directions are found according
to the following equations, in which Rn 5 DRn/[RF1(1 2 k2)] and b 5
1/k.

RECTANGULAR ROSETTE (SEE FIG. 5.2.78a)

« 5 R 2 R /b

croinches per inch (400 microcentimeters per centimeter). If desired, the
approximate strain (probably within 10 percent) may be established
using the calibration strip sprayed with the test part. The strip is placed
in a loading device and bent as a cantilever beam by means of a cam at
the free end, causing the coating to crack on the tension surface. Crack
spacing varies with the strain, being close at the fixed end and diminish-
ing toward the free end down to threshold sensitivity values. The strip is
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1 1 3

«2 5 R2(1 1 1/b) 2 (1/b)(R1 1 R3)
«3 5 R3 2 R1/b

EQUIANGULAR ROSETTE (SEE FIG. 5.2.78b)

«1 5 R1 2 (1/b)(R2 1 R3)
«2 5 R2 2 (1/b)(R1 1 R3)
«3 5 R3 2 (1/b)(R1 1 R3)

T-DELTA ROSETTE (SEE FIG. 5.2.78c)

«1 5 R1(1 1 1/b) 2 (1/b)(R3 1 R4)
«2 5 R2(1 1 1/b) 2 (1/b)(R3 1 R4)
«3 5 R3 2 (1/b)R4

«4 5 R4 2 (1/b)R3

Foil Gages Foil gages are produced from thin foil by photoetching
techniques and are applied, instrumented, read, and evaluated just like
the wire-grid type. Foil gages, being much thinner, may be applied
easily to curved surfaces, have lower transverse sensitivity, exhibit neg-
ligible hysteresis under cycling loads, creep little under sustained loads,
and can be stacked on top of each other.

Brittle-Coating Analysis

Brittle coatings which adhere to the surface well can reveal the strain in
the underlying material. Probably the first such coating used was mill
scale, a thin iron oxide which forms on hot-rolled steel stock. Many
coatings such as whitewash, portland cement, and shellac have been
tried.

The most popular of presently available strain-indicating brittle coat-
ings are the wood-rosin lacquers supplied by the Magnaflux Corpora-
tion under the trade name Stresscoat. Several Stresscoat compositions
are available; the suitability of a particular lacquer depends upon the
prevailing temperature and humidity. The lacquer is usually sprayed to
a thickness of 0.004 to 0.008 in (0.01 to 0.02 cm) upon the surface,
which must be clean and free of grease and loose particles. Calibration
bars are sprayed at the same time. Both must be dried at an even tem-
perature for up to 24 h. To facilitate observation of cracks, an under-
coating of bright aluminum is often applied.

When the cured test piece is subjected to loads, the lacquer will first
begin to crack at its threshold sensitivity in the area of the largest princi-
pal stress, with the parallel cracks perpendicular to the principal stress.
This information is often sufficient, as it reveals the critical area and the
direction of normal stress.

The threshold sensitivity of Stresscoat lacquers is 600 to 800 mi-
croinches per inch (600 to 800 microcentimeters per centimeter) in a
uniaxial stress field. Exact control of lacquer selection, thickness, cur-
ing, and testing temperatures may reduce the threshold to 400 mi-
placed in a holder containing strain graduations. A visual comparison of
cracks on the testpart surface with those on the strip reveals the strain
magnitude which caused the cracks.

Birefringent Coatings

A birefringent coating is one which becomes double refractive when
strained. The principle is quite old, but plastics, which adhere to all
kinds of materials, which have stable optical-strain constants, and which
are sufficiently sensitive to be practical, are of recent development. The
trade name applied to this technique is Photostress. Photostress plastics
can be obtained either as thin sheets (0.040, 0.080, and 0.20 in) or in
liquid form. The sheet material can be bonded to a surface with a special
adhesive. The liquid can be brushed or sprayed on, or the part can be
dipped in the liquid. The layer should be at least 0.004 in (0.010 cm)
thick. It is often necessary to apply several successive coatings, with
heat curing of each layer in turn. Two sheet types and two liquids are
available; these differ in stretching ability and in magnitude of the
strain-optical constant. Each of the sheet materials is available metal-
lized on one face, to reflect polarized light even when cemented to a dull
surface.

The principles involved are the same as those for conventional pho-
toelasticity. One frequent advantage is the fact that the plastic (sheet or
liquid) can be applied directly to the part, which can then be subjected to
actual operating loads. A special reflecting polariscope must be used. It
contains only one polarizer and quarter-wave disk because the light
passes back through the same pair after reflection by the stressed sur-
face-plastic interface. The only limitation rests in the geometry of the
structural component to be examined; not only must it be possible to
apply the plastic to the surface, but the surface must be accessible to
light.

The strain-optic law, since the light passes the plastic thickness twice,
becomes

p 2 q 5
n

2t

E

K(1 1 m)

where n is fringe order, E is modulus, m is Poisson’s ratio of workpiece
material, and K (supplied by the manufacturer) is the strain-optic coeffi-
cient of the plastic. As in conventional photoelasticity, isoclinics are
present as well.

Holography

A more recently developed technique applicable to stress, or rather,
strain analysis as well as to many other purposes is that of holography. It
is made possible by the laser, an instrument which produces a highly
concentrated, thin beam of light of single wavelength. The helium-neon
(He-Ne) laser, emitting at the red end of the visible spectrum at a wave-
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length of 633 nanometers, has found much favor. The output of a he-
lium-cadmium (He-Cd) laser is at half the wavelength of the He-Ne
laser; accordingly, the He-Ne laser is twice as sensitive to displace-
ments.

The laser beam is split into two components, one of which is directed
upon the object (or specimen) and then onto the photographic plate. It is
identified as the object beam. The other component, referred to as the

bench so that beam coherence is assured, required coherence depth
satisfied, and the object/reference angle u consistent with the fringe
spacing desired. The film must also possess adequate sensitivity in the
spectral range of the laser beam used. It is important to recognize the
inherent hazards of the high-intensity radiation in laser beams and to
practice every precaution in the use of lasers.
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reference beam, propagates directly to the plate. Interference between
the beams resulting from retardations caused by displacements or
strains forms fringes which in turn provide a measure of the disturbance.
Spacing of such fringes depends upon Bragg’s law:

d 5
l

2 sin (u/2)

where d is the distance between fringes, l is the wavelength of the light
source, and u is the angle between the object and reference ray at the
plate.

A simple holographic setup consists of the laser source, beam splitter,
reflecting surfaces, filters, and the recording plate. A possible arrange-
ment is depicted in Fig. 5.2.79. Some arrangement for loading the spec-
imen must also be provided. Additional auxiliary and refining hardware
becomes necessary as the analysis assumes greater complexity. Thus
the system layout is limited only by test requirements and the experi-
menter’s imagination. However, only a thorough understanding of the
laws of optics and interferometry will make possible a reliable investi-
gation and interpretation of results.

Stability of setup must be assured via a rigid optical bench and sup-
porting brackets. Component instruments must be spaced upon the

5.3 PIPELINE FLE

by Harold V

EDITOR’S NOTE: The almost universal availability and utilization of personal
computers in engineering practice has led to the development of many competing
and complementary forms of piping stress analysis software. Their use is wide-
spread, and individual packaged software allow
account static and dynamic conditions, restraint
ied configurations, etc. The reader is referred
most suitable and current software available f
problems at hand.
Fig. 5.2.79 Simple holographic setup. (1) Laser source; (2) beam splitter;
(3) reflecting surfaces; (4) circular polarizers; (5) loaded specimen (birefringent);
(6) photographic plate.

Holography, using pulsed lasers, can be used to measure transient
disturbances. Thus vibration studies are possible. Fatigue detection
using holographic techniques has also been undertaken. Holography has
been used in acoustical studies and in automatic gaging as well. It is a
versatile engineering tool.

XURE STRESSES

. Hawkins

Dy 5 same as Dx but parallel to y direction, in. Note that
Dx and Dy are positive if under the change in
temperature the end opposite the origin tends to

a positive x or y direction, respectively.
kness of pipe, in (m)

dius of pipe cross section, in (m)
5 tR/r2
s analysis and design to take into
conditions, aboveground and bur-
to the technical literature for the
or use in solving the immediate

move in
t 5 wall thic
r 5 mean ra
l 5 constant
The brief discussion in this section addresses the fundamental concepts entailed
and sets forth the solution of simple systems as an exercise in application of the
principles.

REFERENCES: Shipman, Design of Steam Piping to Care for Expansion, Trans.
ASME, 1929, Wahl, Stresses and Reactions in Expansion Pipe Bends, Trans.
ASME, 1927. Hovgaard, The Elastic Deformation of Pipe Bends, Jour. Math.
Phys., Nov. 1926, Oct. 1928, and Dec. 1929. M. W. Kellog Co., ‘‘The Design of
Piping Systems,’’ Wiley.

For details of pipe and pipe fittings see Sec. 8.7.

Nomenclature (see Figs. 5.3.1 and 5.3.2)

M0 5 end moment at origin, in ? lb (N ?m)
M 5 max moment, in ? lb (N ?m)
Fx 5 end reaction at origin in x direction, lb (N)
Fy 5 end reaction at origin in y direction, lb (N)
Sl 5 (Mr/I )a 5 max unit longitudinal flexure stress,

lb/in2 (N/m2)
St 5 (Mr/I )b 5 max unit transverse flexure stress, lb/

in2 (N/m2)
Ss 5 (Mr/I )g 5 max unit shearing stress, lb/in2 (N/m2)

Dx 5 relative deflection of ends of pipe parallel to x
direction caused by either temperature change or
support movement, or both, in (m)
I 5 moment of inertia of pipe cross section about pipe
centerline, in4 (m4)

E 5 modulus of elasticity of pipe at actual working
temperature, lb/in2 (N/m2)

K 5 flexibility index of pipe. K 5 1 for all straight pipe
sections, K 5 (10 1 12l2) /(1 1 12l2) for all
curved pipe sections where l . 0.335 (see Fig.
5.3.3)

a, b, g 5 ratios of actual max longitudinal flexure, trans-
verse flexure, and shearing stresses to Mr/I for
curved sections of pipe (see Fig. 5.3.3)

Fig. 5.3.1 Fig. 5.3.2
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A, B, C, F, G, H 5 constants given by Table 5.3.2
u 5 angle of intersection between tangents to direction

of pipe at reactions
Du 5 change in u caused by movements of supports, or

by temperature change, or both, rad
ds 5 an infinitesimal element of length of pipe
s 5 length of a particular curved section of pipe, in

General Discussion

Under the effect of changes in temperature of the pipeline, or of move-
ment of support reactions (either translation or rotation), or both, the
determination of stress distribution in a pipe becomes a statically inde-
terminate problem. In general the problem may be solved by a slight
modification of the standard arch theory: Dx 5 2 KeMy ds(EI ), Dy 5
KeMx ds/(EI ), and Du 5 KeM ds/(EI ) where the constant K is intro-

e (S

(CF

1
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(m)
R 5 radius of curvature of pipe centerline, in (m)

Fig. 5.3.3 Flexure constants of initially curved pipes.

Table 5.3.1 General Equations for Pipelines in One Plan

Type of supports

Both ends fully fixed M0 5
EI Dx

2ABF
Fx 5
EI Dx(CH

2ABF 1

Fy 5
EI Dx(BH

2ABF 1

Du 5 0

Both ends hinged M0 5 0

Fx 5
EI Dx C 1

CG

Fy 5
EI Dx B 1

CG

Du 5
Dx(AB 2

Origin end only hinged, other end fully
fixed

M0 5 0

Fx 5
EI Dx C 1

CG

Fy 5
EI Dx B 1

CG

Du 5
ux(AB 2

In general for any specific rotation Du
and movement Dx and Dy . . .

M0 5
EI Dx(CF

Fx 5
EI Dx(CH

Fy 5
EI Dx(BH
duced to correct for the increased flexibility of a curved pipe, and where
the integration is over the entire length of pipe between supports. In
Table 5.3.1 are given equations derived by this method for moment and
thrust at one reaction point for pipes in one plane that are fully fixed,
hinged at both ends, hinged at one end and fixed at the other, or partly
fixed. If the reactions at one end of the pipe are known, the moment
distribution in the entire pipe then can be obtained by simple statics.

Since an initially curved pipe is more flexible than indicated by its
moment of inertia, the constant K is introduced. Its value may be taken
from Fig. 5.3.3, or computed from the equation given below. K 5 1 for
all straight pipe sections, since they act according to the simple flexure
theory.

In Fig. 5.3.3 are given the flexure constants K, a, b, and g for initially
curved pipes as functions of the quantity l 5 tR/r2. The flexure con-
stants are derived from the equations.

K5 (10 1 12l2) /(1 1 12l2) when l . 0.335

a 5 2⁄3K√(5 1 6l2) /18 l # 1.472
a 5 K(6l2 2 1)/(6l2 1 5) l . 1.472
b 5 18l/ (1 1 12l2)
g 5 [8l 2 36l3 1 (32l2 1 20/3)

3 √(4/3)l2 1 5/18] 4 (1 1 12l2) when l , 0.58
5 (12l2 1 18l 2 2) / (1 1 12l2) when l . 0.58

ee Figs. 5.3.1 and 5.3.2)

Symmetric
Unsymmetric about y-axis

2 AB) 1 EI Dy(BF 2 AG )

CGH 2 B2H 2 A2G 2 CF2

2

M0 5
EI Dx F

GH 2 F2
2 A ) 1 EI Dy(BH 2 AF )

CGH 2 B2H 2 A2G 2 CF2

2 AF ) 1 EI Dy(GH 2 F2)

CGH 2 B2H 2 A2G 2 CF2

Fx 5
EI Dx H

GH 2 F2

Fy 5 0
Du 5 0

EI Dy B

2 B2

EIDy G

2 B2

CF ) 1 Dy(AG 2 BF )

CG 2 B2

M0 5 0

Fx 5
EI Dx

G

Fy 5 0

Du 5
2 DxF

G

EI Dy B

2 B2

EI Dy G

1 B2

CF ) 1 Dy(AG 2 BF )

CG 2 B2

2 AB) 1 EI Dy(BF 2 AG ) 1 EI Du(CG 2 B2 )

2ABF 1 CGH 2 A3G 2 CF2 2 B2H

2 A2 ) 1 EI Dy(BH 2 AF ) 1 EI Du(CF 2 AB)

2ABF 1 CGH 2 A2G 2 CF2 2 B2H

2 AF ) 1 EI Dy(GH 2 F2 ) 1 EI Du(BF 2 AG )

2ABF 1 CGH 2 A2G 2 CF2 2 B2H
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The increased flexibility of the curved pipe is brought about by the
tendency of its cross section to flatten. This flattening causes a trans-
verse flexure stress whose maximum is St. Because the maximum lon-
gitudinal and maximum transverse stresses do not occur at the same
point in the pipe’s cross section, the resulting maximum shear is not
one-half the difference of Sl and St; it is Ss . In the straight sections of the
pipe, a 5 1, the transverse stress disappears, and l 5 1⁄2. This discus-

There is no transverse flexure stress since all sections are straight. The maxi-
mum shearing stress is either (1) one-half of the maximum longitudinal fiber stress
as given above, (2) one-half of the hoop-tension stress caused by an internal radial
pressure that might exist in the pipe, or (3) one-half the difference of the maximum
longitudinal fiber stress and hoop-tension stress, whichever of these three possi-
bilities is numerically greatest.
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sion of Ss does not include the uniform transverse or longitudinal ten-
sion stresses induced by the internal pressure in the pipe; their effects
should be added if appreciable.

Table 5.3.2 gives values of the constants A, B, C, F, G, and H for use
in equations listed in Table 5.3.1. The values may be used (1) for the
solution of any pipeline or (2) for the derivation of equations for stan-
dard shapes composed of straight sections and arcs of circles as of Fig.
5.3.5. Equations for shapes not given may be obtained by algebraic
addition of those given. All measurements are from the left-hand end of
the pipeline. Reactions and stresses are greatly influenced by end condi-
tions. Formulas are given to cover the extreme conditions. The follow-
ing suggestions and comments should be considered when laying out a
pipeline:

Avoid expansion bends, and design the entire pipeline to take care of its
own expansion.

The movement of the equipment to which the ends of the pipeline are
attached must be included in the Dx and Dy of the equations.

Maximum flexibility is obtained by placing supports and anchors so
that they will not interfere with the natural movement of the pipe.

That shape is most efficient in which the maximum length of pipe is
working at the maximum safe stress.

Excessive bending moment at joints is more likely to cause trouble
than excessive stresses in pipe walls. Hence, keep pipe joints away from
points of high moment.

Reactions and stresses are greatly influenced by flattening of the cross
section of the curved portions of the pipeline.

It is recommended that cold springing allowances be discounted in
stress calculations.

Application to Two- and Three-Plane Pipelines Pipelines in more
than one plane may be solved by the successive application of the
preceding data, dividing the pipeline into two or more one-plane lines.

EXAMPLE 1. The unsymmetric pipeline of Fig. 5.3.4 has fully fixed ends.
From Table 5.3.2 use K 5 1 for all sections, since only straight segments are
involved.

Upon introduction of a 5 120 in (3.05 m), b 5 60 in (1.52 m), and c 5 180 in
(4.57 m), into the preceding relations (Table 5.3.3) for A, B, C, F, G, H, the
equations for the reactions at 0 from Table 5.3.1 become

M0 5 EI Dx (2 7.1608 3 102 5) 1 EI Dy (2 8.3681 3 102 5)

Fx 5 EI Dx (1 1.0993 3 102 5) 1 EI Dy (1 3.1488 3 102 6)

Fy 5 EI Dx (1 3.1488 3 102 6) 1 EI Dy (1 1.33717 3 102 6)

Also it follows that

M1 5 M0 1 Fya 5 EI Dx (1 3.0625 3 102 4) 1 EI Dy (1 7.6779 3 102 5)

M2 5 M1 2 Fxb 5 EI Dx(2 3.5333 3 102 4) 1 EI Dy (2 1.1215 3 102 4)

M3 5 M2 1 Fyc 5 EI Dx (1 2.1345 3 102 4) 1 EI Dy (1 1.2854 3 102 4)

Thus the maximum moment M occurs at 3.
The total maximum longitudinal fiber stress (a 5 1 for straight pipe)

Sl 5
Fx

2prt
6

M3r

I

Fig. 5.3.4

EXAMPLE 2. The equations of Table 5.3.1 may be employed to develop the
solution of generalized types of pipe configurations for which Fig. 5.3.5 is a
typical example. If only temperature changes are considered, the reactions for the
right-angle pipeline (Fig. 5.3.5) may be determined from the following equations:

M0 5 C1EI Dx/R2

Fx 5 C2EI Dx/R3

Fy 5 C3EI Dx/R3

In these equations, Dx is the x component of the deflection between reaction
points caused by temperature change only. The values of C1, C2, and C3 are given
in Fig. 5.3.6 for K 5 1 and K 5 2. For other values of K, interpolation may be
employed.

Fig. 5.3.5 Right angle pipeline.

EXAMPLE 3. With a/R 5 20 and b/R 5 3, the value of C1 is 0.185 for K 5 1
and 0.165 for K 5 2. If K 5 1.75, the interpolated value of C1 is 0.175.

Elimination of Flexure Stresses Pipeline flexure stresses that nor-
mally would result from movement of supports or from the tendency of
the pipes to expand under temperature change often may be avoided
entirely through the use of expansion joints (Sec. 8.7). Their use may
simplify both the design of the pipeline and the support structure. When
using expansion joints, the following suggestions should be considered:
(1) select expansion joint carefully for maximum temperature range
(and deflection) expected so as to prevent damage to expansion fitting;
(2) provide guides to limit movement at expansion joint to direction
permitted by joint; (3) provide adequate anchors at one end of each
straight section or along their midlength, forcing movement to occur at
expansion joint yet providing adequate support for pipeline; (4) mount
expansion joints adjacent to an anchor point to prevent sagging of the
pipeline under its own weight and do not depend upon the expansion
joint for stiffness—it is intended to be flexible; (5) give consideration
to effects of corrosion, since corrugated character of expansion joints
makes cleaning difficult.



Table 5.3.2 Values of A, B C, F, G, and H for Various Piping Elements

A 5 Kex ds B 5 Kexy ds C 5 Kex2 ds F 5 Key ds G 5 Key2 ds H 5 Ke ds
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s
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Fig. 5.3.6 Reactions for right-angle pipelines.
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Table 5.3.3 Example 1 Showing Determination of Integrals

Values of integrals
Part of

pipe A B C F G H

0–1
a2

2
0

a3

3
0 0 a

1–2 ab
ab2

2
a2b

b2

2

b3

3
b

2–3
c

2
(2a 1 c)

bc

2
(2a 1 c)

c3

3
1 ac(a 1 c) bc b2c c

Total 0–3
a2

2
1 ab

1
c

2
(2a 1 c)

ab2

2
1

bc

2
(2a 1 c)

a3

3
1 a2b 1

c3

3

1 ac(a 1 c)

b2

2
1 bc

b3

3
1 b2c a 1 b 1 c

5.4 NONDESTRUCTIVE TESTING
by Donald D. Dodge

REFERENCES: Various authors, ‘‘Nondestructive Testing Handbook,’’ 8 vols.,
American Society for Nondestructive Testing. Boyer, ‘‘Metals Handbook,’’ vol.
11, American Society for Metals. Heuter and Bolt , ‘‘Sonics,’’ Wiley.
Krautkramer, ‘‘Ultrasonic Testing of Materials,’’ Springer-Verlag. Spanner,
‘‘Acoustic Emission: Techniques and Application
Nondestructive Testing. Crowther, ‘‘Handbook o
nold. Wiltshire, ‘‘A Further Handbook of Ind
‘‘Standards,’’ vol. 03.03, ASTM, Boiler and Pres

wave direct current may be used for the location of surface defects.
Half-wave direct current is most effective for locating subsurface de-
fects. Magnetic particles may be applied dry or as a wet suspension in a

er. Colored dry powders are advantageous
efects and when testing objects that have
s, forgings, and weldments. Wet particles
very fine cracks, such as fatigue, stress
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s,’’ Intex, American Society for
f Industrial Radiography,’’ Ar-
ustrial Radiography,’’ Arnold.
sure Vessel Code, Secs. III, V,

liquid such as kerosene or wat
when testing for subsurface d
rough surfaces, such as casting
are preferred for detection of

corrosion, or grinding cracks. Fluorescent wet particles are used to in-
XI, ASME. ASME Handbook, ‘‘Metals Engineering—Design,’’ McGraw-Hill.

SAE Handbook, Secs. J358, J359, J420, J425–J428, J1242, J1267, SAE. Materi-
als Evaluation, Jour. Am. Soc. Nondestructive Testing.

Nondestructive tests are those tests that determine the usefulness, ser-
viceability, or quality of a part or material without limiting its useful-
ness. Nondestructive tests are used in machinery maintenance to avoid
costly unscheduled loss of service due to fatigue or wear; they are used
in manufacturing to ensure product quality and minimize costs. Consid-
eration of test requirements early in the design of a product may facili-
tate testing and minimize testing cost . Nearly every form of energy is
used in nondestructive tests, including all wavelengths of the electro-
magnetic spectrum as well as vibrational mechanical energy. Physical
properties, composition, and structure are determined; flaws are de-
tected; and thickness is measured. These tests are here divided into the
following basic methods: magnetic particle, penetrant, radiographic, ul-
trasonic, eddy current, acoustic emission, microwave, and infrared. Numer-
ous techniques are utilized in the application of each test method. Table
5.4.1 gives a summary of many nondestructive test methods.

MAGNETIC PARTICLE METHODS

Magnetic particle testing is a nondestructive method for detecting dis-
continuities at or near the surface in ferromagnetic materials. After the
test object is properly magnetized, finely divided magnetic particles are
applied to its surface. When the object is properly oriented to the in-
duced magnetic field, a discontinuity creates a leakage flux which at-
tracts and holds the particles, forming a visible indication. Magnetic-
field direction and character are dependent upon how the magnetizing
force is applied and upon the type of current used. For best sensitivity,
the magnetizing current must flow in a direction parallel to the principal
direction of the expected defect . Circular fields, produced by passing
current through the object , are almost completely contained within the
test object . Longitudinal fields, produced by coils or yokes, create ex-
ternal poles and a general-leakage field. Alternating, direct , or half-
spect objects with the aid of ultraviolet light . Fluorescent inspection is
widely used because of its greater sensitivity. Application of particles
while magnetizing current is on (continuous method) produces stronger
indications than those obtained if the particles are applied after the
current is shut off (residual method). Interpretation of subsurface-defect
indications requires experience. Demagnetization of the test object after
inspection is advisable.

Magnetic flux leakage is a variation whereby leakage flux due to
flaws is detected electronically via a Hall-effect sensor. Computerized
signal interpretation and data imaging techniques are employed.

Electrified particle testing indicates minute cracks in nonconducting
materials. Particles of calcium carbonate are positively charged as they
are blown through a spray gun at the test object . If the object is metal-
backed, such as porcelain enamel, no preparation other than cleaning is
necessary. When it is not metal-backed, the object must be dipped in an
aqueous penetrant solution and dried. The penetrant remaining in cracks
provides a mobile electron supply for the test . A readily visible powder
indication forms at a crack owing to the attraction of the positively
charged particles.

PENETRANT METHODS

Liquid penetrant testing is used to locate flaws open to the surface of
nonporous materials. The test object must be thoroughly cleaned before
testing. Penetrating liquid is applied to the surface of a test object by a
brush, spray, flow, or dip method. A time allowance (1 to 30 min) is
required for liquid penetration of surface flaws. Excess penetrant is then
carefully removed from the surface, and an absorptive coating, known
as developer, is applied to the object to draw penetrant out of flaws, thus
showing their location, shape, and approximate size. The developer is
typically a fine powder, such as talc usually in suspension in a liquid.
Penetrating-liquid types are (1) for test in visible light , and (2) for test
under ultraviolet light (3,650 Å). Sensitivity of penetrant testing is
greatest when a fluorescent penetrant is used and the object is observed
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Table 5.4.1 Nondestructive Test Methods*

Method Measures or detects Applications Advantages Limitations

Acoustic emission Crack initiation and growth
rate

Internal cracking in welds
during cooling

Boiling or cavitation
Friction or wear
Plastic deformation
Phase transformations

Pressure vessels
Stressed structures
Turbine or gearboxes
Fracture mechanics

research
Weldments
Sonic-signature analysis

Remote and continuous
surveillance

Permanent record
Dynamic (rather than

static) detection of
cracks

Portable
Triangulation techniques to

locate flaws

Transducers must be
placed on part surface

Highly ductile
materials yield low-

amplitude emissions
Part must be stressed or

operating
Interfering noise needs to

be filtered out

Acoustic-impact (tapping) Debonded areas or delam-
inations in metal or
nonmetal composites or
laminates

Cracks under bolt or
fastener heads

Cracks in turbine wheels or
turbine blades

Loose rivets or fastener
heads

Crushed core

Brazed or adhesive-bonded
structures

Bolted or riveted assem-
blies

Turbine blades
Turbine wheels
Composite structures
Honeycomb assemblies

Portable
Easy to operate
May be automated
Permanent record or

positive meter readout
No couplant required

Part geometry and mass
influences test results

Impactor and probe must
be repositioned to fit
geometry of part

Reference standards
required

Pulser impact rate is criti-
cal for repeatability

D-Sight (Diffracto) Enhances visual inspection
for surface abnormali-
ties such as dents pro-
trusions, or waviness’

Crushed core
Lap joint corrosion
Cold-worked holes
Cracks

Detect impact damage to
composites or honey-
comb corrosion in
aircraft lap joints

Automotive bodies for
waviness

Portable
Fast, flexible
Noncontact
Easy to use
Documentable

Part surface must reflect
light or be wetted with
a fluid

Eddy current Surface and subsurface
cracks and seams

Alloy content
Heat-treatment variations
Wall thickness, coating

thickness
Crack depth
Conductivity
Permeability

Tubing
Wire
Ball bearings
‘‘Spot checks’’ on all types

of surfaces
Proximity gage
Metal detector
Metal sorting
Measure conductivity in %

IACS

No special operator skills
required

High speed, low cost
Automation possible for

symmetric parts
Permanent-record capabil-

ity for symmetric parts
No couplant or probe con-

tact required

Conductive materials
Shallow depth of penetra-

tion (thin walls only)
Masked or false indications

caused by sensitivity
to variations such as
part geometry

Reference standards
required

Permeability variations

Magneto-optic eddy-
current imager

Cracks
Corrosion thinning in

aluminum

Aluminum aircraft
Structure

Real-time imaging
Approximately 4-in area

coverage

Frequency range of 1.6 to
100 kHz

Surface contour
Temperature range of 32 to

90°F
Directional sensitivity to

cracks

Eddy-sonic Debonded areas in metal-
core or metal-faced
honeycomb structures

Delaminations in metal
laminates or composites

Crushed core

Metal-core honeycomb
Metal-faced honeycomb
Conductive laminates such

as boron or graphite-
fiber composites

Bonded-metal panels

Portable
Simple to operate
No couplant required
Locates far-side debonded

areas
Access to only one surface

required
May be automated

Specimen or part must
contain conductive
materials to establish
eddy-current field

Reference standards
required

Part geometry

Electric current Cracks
Crack depth
Resistivity
Wall thickness
Corrosion-induced wall

thinning

Metallic materials
Electrically conductive

materials
Train rails
Nuclear fuel elements
Bars, plates other shapes

Access to only one surface
required

Battery or dc source
Portable

Edge effect
Surface contamination
Good surface contact

required
Difficult to automate
Electrode spacing
Reference standards

required

Electrified particle Surface flaws in noncon-
ducting material

Through-to-metal pinholes
on metal-backed
material

Tension, compression,
cyclic cracks

Brittle-coating stress cracks

Glass
Porcelain enamel
Nonhomogeneous

materials such as
plastic or asphalt
coatings

Glass-to-metal seals

Portable
Useful on materials not

practical for penetrant
inspection

Poor resolution on thin
coatings

False indications from
moisture streaks or lint

Atmospheric conditions
High-voltage discharge
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Table 5.4.1 Nondestructive Test Methods* (Continued )

Method Measures or detects Applications Advantages Limitations

Filtered particle Cracks
Porosity
Differential absorption

Porous materials such as
clay, carbon, powdered
metals, concrete

Grinding wheels
High-tension insulators
Sanitary ware

Colored or fluorescent
particles

Leaves no residue after
baking part over 400°F

Quickly and easily applied
Portable

Size and shape of particles
must be selected before
use

Penetrating power of
suspension medium is
critical

Particle concentration must
be controlled

Skin irritation

Infrared (radiometry)
(thermography)

Hot spots
Lack of bond
Heat transfer
Isotherms
Temperature ranges

Brazed joints
Adhesive-bonded joints
Metallic platings or

coatings; debonded
areas or thickness

Electrical assemblies
Temperature monitoring

Sensitive to 0.1°F
temperature variation

Permanent record or
thermal picture

Quantitative
Remote sensing; need not

contact part
Portable

Emissivity
Liquid-nitrogen-cooled

detector
Critical time-temperature

relationship
Poor resolution for thick

specimens
Reference standards

required

Leak testing Leaks:
Helium
Ammonia
Smoke
Water
Air bubbles
Radioactive gas
Halogens

Joints:
Welded
Brazed
Adhesive-bonded

Sealed assemblies
Pressure or vacuum

chambers
Fuel or gas tanks

High sensitivity to
extremely small, light
separations not
detectable by other
NDT methods

Sensitivity related to
method selected

Accessibility to both
surfaces of part required

Smeared metal or
contaminants may
prevent detection

Cost related to sensitivity

Magnetic particle Surface and slightly
subsurface flaws;
cracks, seams, porosity,
inclusions

Permeability variations
Extremely sensitive for

locating small tight
cracks

Ferromagnetic materials;
bar, plate, forgings,
weldments, extrusions,
etc.

Advantage over penetrant
is that it indicates
subsurface flaws,
particularly inclusions

Relatively fast and low-cost
May be portable

Alignment of magnetic
field is critical

Demagnetization of parts
required after tests

Parts must be cleaned be-
fore and after inspection

Masking by surface
coatings

Magnetic field (also
magnetic flux leakage)

Cracks
Wall thickness
Hardness
Coercive force
Magnetic anisotropy
Magnetic field
Nonmagnetic coating

thickness on steel

Ferromagnetic materials
Ship degaussing
Liquid-level control
Treasure hunting
Wall thickness of

nonmetallic materials
Material sorting

Measurement of magnetic
material properties

May be automated
Easily detects magnetic

objects in nonmagnetic
material

Portable

Permeability
Reference standards

required
Edge effect
Probe lift-off

Microwave (300 MHz–
300 GHz)

Cracks, holes, debonded
areas, etc., in
nonmetallic parts

Changes in composition,
degree of cure,
moisture content

Thickness measurement
Dielectric constant
Loss tangent

Reinforced plastics
Chemical products
Ceramics
Resins
Rubber
Wood
Liquids
Polyurethane foam
Radomes

Between radio waves and
infrared in
electromagnetic
spectrum

Portable
Contact with part surface

not normally required
Can be automated

Will not penetrate metals
Reference standards

required
Horn-to-part spacing

critical
Part geometry
Wave interference
Vibration

Liquid penetrants (dye or
fluorescent)

Flaws open to surface of
parts; cracks, porosity,
seams, laps, etc.

Through-wall leaks

All parts with
nonabsorbing surfaces
(forgings, weldments,
castings, etc.). Note:
Bleed-out from porous
surfaces can mask
indications of flaws

Low cost
Portable
Indications may be further

examined visually
Results easily interpreted

Surface films such as
coatings, scale, and
smeared metal may
prevent detection of
flaws

Parts must be cleaned
before and after
inspection

Flaws must be open to
surface

Fluoroscopy
(cinefluorography)
(kinefluorography)

Level of fill in containers
Foreign objects
Internal components
Density variations
Voids, thickness
Spacing or position

Flow of liquids
Presence of cavitation
Operation of valves and

switches
Burning in small solid-pro-

pellant rocket motors

High-brightness images
Real-time viewing
Image magnification
Permanent record
Moving subject can be

observed

Costly equipment
Geometric unsharpness
Thick specimens
Speed of event to be studied
Viewing area
Radiation hazard
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Table 5.4.1 Nondestructive Test Methods* (Continued )

Method Measures or detects Applications Advantages Limitations

Neutron radiology (thermal
neutrons from reactor,
accelerator, or
Californium 252)

Hydrogen contamination of
titanium or zirconium
alloys

Defective or improperly
loaded pyrotechnic
devices

Improper assembly of
metal, nonmetal parts

Corrosion products

Pyrotechnic devices
Metallic, nonmetallic

assemblies
Biological specimens
Nuclear reactor fuel

elements and control
rods

Adhesive-bonded structures

High neutron absorption by
hydrogen, boron,
lithium, cadmium,
uranium, plutonium

Low neutron absorption by
most metals

Complement to X-ray or
gamma-ray radiography

Very costly equipment
Nuclear reactor or

accelerator required
Trained physicists required
Radiation hazard
Nonportable
Indium or gadolinium

screens required

Gamma radiology (cobalt
60, iridium 192)

Internal flaws and
variations, porosity,
inclusions, cracks, lack
of fusion, geometry
variations, corrosion
thinning

Density variations
Thickness, gap, and

position

Usually where X-ray
machines are not
suitable because source
cannot be placed in
part with small
openings and/or power
source not available

Panoramic imaging

Low initial cost
Permanent records; film
Small sources can be

placed in parts with
small openings

Portable
Low contrast

One energy level per source
Source decay
Radiation hazard
Trained operators needed
Lower image resolution
Cost related to source size

X-ray radiology Internal flaws and
variations; porosity,
inclusions, cracks, lack
of fusion, geometry
variations, corrosion

Density variations
Thickness, gap, and

position
Misassembly
Misalignment

Castings
Electrical assemblies
Weldments
Small, thin, complex

wrought products
Nonmetallics
Solid-propellant rocket

motors
Composites
Container contents

Permanent records; film
Adjustable energy levels

(5 kV–25 meV)
High sensitivity to density

changes
No couplant required
Geometry variations do not

affect direction of
X-ray beam

High initial costs
Orientation of linear flaws

in part may not be
favorable

Radiation hazard
Depth of flaw not indicated
Sensitivity decreases with

increase in scattered
radiation

Radiometry X-ray, gamma
ray, beta ray)
(transmission or
backscatter)

Wall thickness
Plating thickness
Variations in density or

composition
Fill level in cans or

containers
Inclusions or voids

Sheet, plate, strip, tubing
Nuclear reactor fuel rods
Cans or containers
Plated parts
Composites

Fully automatic
Fast
Extremely accurate
In-line process control
Portable

Radiation hazard
Beta ray useful for

ultrathin coatings only
Source decay
Reference standards

required

Reverse-geometry digital
X-ray

Cracks
Corrosion
Water in honeycomb
Carbon epoxy honeycomb
Foreign objects

Aircraft structure High-resolution 106 pixel
image with high
contrast

Access to both sides of
object

Radiation hazard

X-ray computed
tomography (CT)

Small density changes
Cracks
Voids
Foreign objects

Solid-propellant rocket
motors

Rocket nozzles
Jet-engine parts
Turbine blades

Measures X-ray opacity of
object along many paths

Very expensive
Trained operator
Radiation hazard

Shearography electronic Lack of bond
Delaminations
Plastic deformation
Strain
Crushed core
Impact damage
Corrosion in Al honeycomb

Composite-metal
honeycomb

Bonded structures
Composite structures

Large area coverage
Rapid setup and operation
Noncontacting
Video image easy to store

Requires vacuum thermal,
ultrasonic, or
microwave stressing of
structure to cause
surface strain

Thermal (thermochromic
paint, liquid crystals)

Lack of bond
Hot spots
Heat transfer
Isotherms
Temperature ranges
Blockage in coolant

passages

Brazed joints
Adhesive-bonded joints
Metallic platings or

coatings
Electrical assemblies
Temperature monitoring

Very low initial cost
Can be readily applied to

surfaces which may
be difficult to inspect
by other methods

No special operator skills

Thin-walled surfaces only
Critical time-temperature

relationship
Image retentivity affected

by humidity
Reference standards

required

Sonic (less than 0.1 MHz) Debonded areas or
delaminations in metal
or nonmetal composites
or laminates

Cohesive bond strength
under controlled
conditions

Crushed or fractured core
Bond integrity of metal

insert fasteners

Metal or nonmetal
composite or laminates
brazed or adhesive-
bonded

Plywood
Rocket-motor nozzles
Honeycomb

Portable
Easy to operate
Locates far-side debonded

areas
May be automated
Access to only one surface

required

Surface geometry
influences test results

Reference standards
required

Adhesive or core-thickness
variations influence
results
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Table 5.4.1 Nondestructive Test Methods* (Continued )

Method Measures or detects Applications Advantages Limitations

Ultrasonic (0.1–25 MHz) Internal flaws and
variations; cracks, lack
of fusion, porosity,
inclusions,
delaminations, lack of
bond, texturing

Thickness or velocity
Poisson’s ratio, elastic

modulus

Metals
Welds
Brazed joints
Adhesive-bonded joints
Nonmetallics
In-service parts

Most sensitive to cracks
Test results known

immediately
Automating and

permanent-record
capability

Portable
High penetration capability

Couplant required
Small, thin, or complex

parts may be difficult
to inspect

Reference standards
required

Trained operators for
manual inspection

Special probes

Thermoelectric probe Thermoelectric potential
Coating thickness
Physical properties
Thompson effect
P-N junctions in

semiconductors

Metal sorting
Ceramic coating thickness

on metals
Semiconductors

Portable
Simple to operate
Access to only one surface

required

Hot probe
Difficult to automate
Reference standards

required
Surface contaminants
Conductive coatings

* From Donald J. Hagemaier, ‘‘Metal Progress Databook,’’ Douglas Aircraft Co., McDonnell-Douglas Corp., Long Beach, CA.

in a semidarkened location. After testing, the penetrant and developer
are removed by washing with water, sometimes aided by an emulsifier,
or with a solvent .

In filtered particle testing, cracks in porous objects (100 mesh or
smaller) are indicated by the difference in absorption between a cracked
and a flaw-free surface. A liquid containing suspended particles is
sprayed on a test object . If a crack exists, particles are filtered out and

A radiograph is a shadow picture, since X-rays and gamma rays
follow the laws of light in shadow formation. Four factors determine
the best geometric sharpness of a picture: (1) The effective focal-spot
size of the radiation source should be as small as possible. (2) The
source-to-object distance should be adequate for proper definition of
the area of the object farthest from the film. (3) The film should be as
close as possible to the object . (4) The area of interest should be in
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concentrate at the surface as liquid flows into the additional absorbent
area created by the crack. Fluorescent or colored particles are used to
locate flaws in unfired dried clay, certain fired ceramics, concrete, some
powdered metals, carbon, and partially sintered tungsten and titanium
carbides.

RADIOGRAPHIC METHODS

Radiographic test methods employ X-rays, gamma rays, or similar pene-
trating radiation to reveal flaws, voids, inclusions, thickness, or struc-
ture of objects. Electromagnetic energy wavelengths in the range of
0.01 to 10 Å (1 Å 5 1028 cm) are used to examine the interior of opaque
materials. Penetrating radiation proceeds from its source in straight
lines to the test object . Rays are differentially absorbed by the object ,
depending upon the energy of the radiation and the nature and thickness
of the material.

X-rays of a variety of wavelengths result when high-speed electrons
in a vacuum tube are suddenly stopped. An X-ray tube contains a heated
filament (cathode) and a target (anode); radiation intensity is almost
directly proportional to filament current (mA); tube voltage (kV) deter-
mines the penetration capability of the rays. As tube voltage increases,
shorter wavelengths and more intense X-rays are produced. When the
energy of penetrating radiation increases, shorter wavelengths and more
intense X-rays are produced. Also, when the energy of penetrating radi-
ation increases, the difference in attenuation between materials de-
creases. Consequently, more film-image contrast is obtained at lower
voltage, and a greater range of thickness can be radiographed at one
time at higher voltage.

Gamma rays of a specific wavelength are emitted from the disinte-
grating nuclei of natural radioactive elements, such as radium, and from
a variety of artificial radioactive isotopes produced in nuclear reactors.
Cobalt 60 and iridium 192 are commonly used for industrial radiogra-
phy. The half-life of an isotope is the time required for half of the
radioactive material to decay. This time ranges from a few hours to
many years.

Radiographs are photographic records produced by the passage of
penetrating radiation onto a film. A void or reduced mass appears as a
darker image on the film because of the lesser absorption of energy and
the resulting additional exposure of the film. The quantity of X-rays
absorbed by a material generally increases as the atomic number in-
creases.
the center of and perpendicular to the X-ray beams and parallel to the
X-ray film.

Radiographic films vary in speed, contrast , and grain size. Slow films
generally have smaller grain size and produce more contrast . Slow films
are used where optimum sharpness and maximum contrast are desired.
Fast films are used where objects with large differences in thickness are
to be radiographed or where sharpness and contrast can be sacrificed to
shorten exposure time. Exposure of a radiographic film comes from
direct radiation and scattered radiation. Direct radiation is desirable,
image-forming radiation; scattered radiation, which occurs in the object
being X-rayed or in neighboring objects, produces undesirable images
on the film and loss of contrast . Intensifying screens made of 0.005- or
0.010-in- (0.13-mm or 0.25-mm) thick lead are often used for radiogra-
phy at voltages above 100 kV. The lead filters out much of the low-en-
ergy scatter radiation. Under action of X-rays or gamma rays above
88 kV, a lead screen also emits electrons which, when in intimate con-
tact with the film, produce additional coherent darkening of the film.
Exposure time can be materially reduced by use of intensifying screens
above and below the film.

Penetrameters are used to indicate the contrast and definition which
exist in a radiograph. The type generally used in the United States is a
small rectangular plate of the same material as the object being X-rayed.
It is uniform in thickness (usually 2 percent of the object thickness) and
has holes drilled through it . ASTM specifies hole diameters 1, 2, and 4
times the thickness of the penetrameter. Step, wire, and bead penetram-
eters are also used. (See ASTM Materials Specification E94.)

Because of the variety of factors that affect the production and mea-
surements of an X-ray image, operating factors are generally selected
from reference tables or graphs which have been prepared from test data
obtained for a range of operating conditions.

All materials may be inspected by radiographic means, but there are
limitations to the configurations of materials. With optimum tech-
niques, wires 0.0001 in (0.003 mm) in diameter can be resolved in small
electrical components. At the other extreme, welded steel pressure ves-
sels with 20-in (500-mm) wall thickness can be routinely inspected by
use of high-energy accelerators as a source of radiation. Neutron radia-
tion penetrates extremely dense materials such as lead more readily than
X-rays or gamma rays but is attenuated by lighter-atomic-weight mate-
rials such as plastics, usually because of their hydrogen content .

Radiographic standards are published by ASTM, ASME, AWS, and
API, primarily for detecting lack of penetration or lack of fusion in
welded objects. Cast-metal objects are radiographed to detect condi-
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tions such as shrink, porosity, hot tears, cold shuts, inclusions, coarse
structure, and cracks.

The usual method of utilizing penetrating radiation employs film.
However, Geiger counters, semiconductors, phosphors (fluoroscopy),
photoconductors (xeroradiography), scintillation crystals, and vidicon
tubes (image intensifiers) are also used. Computerized digital radiogra-

500 kHz and 25 MHz, with 2.25 and 5 MHz being most commonly
employed for flaw detection. Low frequencies (40 kHz to 1.0 MHz) are
used on materials of low elastic modulus or large grain size. High fre-
quencies (2.25 to 25 MHz) provide better resolution of smaller defects
and are used on fine-grain materials and thin sections. Frequencies
above 25 MHz are employed for investigation and measurement of
physical properties related to acoustic attenuation.
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phy is an expanding technology.
The dangers connected with exposure of the human body to X-rays

and gamma rays should be fully understood by any person responsible
for the use of radiation equipment . NIST is a prime source of informa-
tion concerning radiation safety. NRC specifies maximum permissible
exposure to be a 1.25 R/1⁄4 year.

ULTRASONIC METHODS

Ultrasonic nondestructive test methods employ high-frequency mechan-
ical vibrational energy to detect and locate structural discontinuities or
differences and to measure thickness of a variety of materials. An elec-
tric pulse is generated in a test instrument and transmitted to a trans-
ducer, which converts the electric pulse into mechanical vibrations.
These low-energy-level vibrations are transmitted through a coupling
liquid into the test object , where the ultrasonic energy is attenuated,
scattered, reflected, or resonated to indicate conditions within material.
Reflected, transmitted, or resonant sound energy is reconverted to elec-
trical energy by a transducer and returned to the test instrument , where
it is amplified. The received energy is then usually displayed on a cath-
ode-ray tube. The presence, position, and amplitude of echoes indicate
conditions of the test-object material.

Materials capable of being tested by ultrasonic energy are those which
transmit vibrational energy. Metals are tested in dimensions of up to
30 ft (9.14 m). Noncellular plastics, ceramics, glass, new concrete, or-
ganic materials, and rubber can be tested. Each material has a character-
istic sound velocity, which is a function of its density and modulus
(elastic or shear).

Material characteristics determinable through ultrasonics include
structural discontinuities, such as flaws and unbonds, physical constants
and metallurgical differences, and thickness (measured from one side).
A common application of ultrasonics is the inspection of welds for
inclusions, porosity, lack of penetration, and lack of fusion. Other ap-
plications include location of unbond in laminated materials, location of
fatigue cracks in machinery, and medical applications. Automatic test-
ing is frequently performed in manufacturing applications.

Ultrasonic systems are classified as either pulse-echo, in which a sin-
gle transducer is used, or through-transmission, in which separate send-
ing and receiving transducers are used. Pulse-echo systems are more
common. In either system, ultrasonic energy must be transmitted into,
and received from, the test object through a coupling medium, since air
will not efficiently transmit ultrasound of these frequencies. Water, oil,
grease, and glycerin are commonly used couplants. Two types of testing
are used: contact and immersion. In contact testing, the transducer is
placed directly on the test object . In immersion testing, the transducer
and test object are separated from one another in a tank filled with water
or by a column of water or by a liquid-filled wheel. Immersion testing
eliminates transducer wear and facilitates scanning of the test object .
Scanning systems have paper-printing or computerized video equip-
ment for readout of test information.

Ultrasonic transducers are piezoelectric units which convert electric
energy into acoustic energy and convert acoustic energy into electric
energy of the same frequency. Quartz, barium titanate, lithium sulfate,
lead metaniobate, and lead zirconate titanate are commonly used trans-
ducer crystals, which are generally mounted with a damping backing in
a housing. Transducers range in size from 1⁄16 to 5 in (0.15 to 12.7 cm)
and are circular or rectangular. Ultrasonic beams can be focused to
improve resolution and definition. Transducer characteristics and beam
patterns are dependent upon frequency, size, crystal material, and con-
struction.

Test frequencies used range from 40 kHz to 200 MHz. Flaw-detection
and thickness-measurement applications use frequencies between
Wave-vibrational modes other than longitudinal are effective in detect-
ng flaws that do not present a reflecting surface to the ultrasonic beam,
r other characteristics not detectable by the longitudinal mode. They
re useful also when large areas of plates must be examined. Wedges of
lastic, water, or other material are inserted between the transducer face
nd the test object to convert , by refraction, to shear, transverse, sur-
ace, or Lamb vibrational modes. As in optics, Snell’s law expresses the
elationship between incident and refracted beam angles; i.e., the ratio
f the sines of the angle from the normal, of the incident and refracted
eams in two mediums, is equal to the ratio of the mode acoustic veloci-
ies in the two mediums.

Limiting conditions for ultrasonic testing may be the test-object shape,
urface roughness, grain size, material structure, flaw orientation, selec-
ivity of discontinuities, and the skill of the operator. Test sensitivity is
ess for cast metals than for wrought metals because of grain size and
urface differences.

Standards for acceptance are published in many government , national
ociety, and company specifications (see references above). Evaluation
s made by comparing (visually or by automated electronic means) re-
eived signals with signals obtained from reference blocks containing
at bottom holes between 1⁄64 and 8⁄64 in (0.40 and 0.325 cm) in diame-

er, or from parts containing known flaws, drilled holes, or machined
otches.

DDY CURRENT METHODS

ddy current nondestructive tests are based upon correlation between
lectromagnetic properties and physical or structural properties of a test
bject . Eddy currents are induced in metals whenever they are brought
nto an ac magnetic field. These eddy currents create a secondary mag-
etic field, which opposes the inducing magnetic field. The presence of
iscontinuities or material variations alters eddy currents, thus changing
he apparent impedance of the inducing coil or of a detection coil. Coil
mpedance indicates the magnitude and phase relationship of the eddy
urrents to their inducing magnetic-field current . This relationship is
ependent upon the mass, conductivity, permeability, and structure of
he metal and upon the frequency, intensity, and distribution of the
lternating magnetic field. Conditions such as heat treatment , composi-
ion, hardness, phase transformation, case depth, cold working,
trength, size, thickness, cracks, seams, and inhomogeneities are indi-
ated by eddy current tests. Correlation data must usually be obtained to
etermine whether test conditions for desired characteristics of a partic-
lar test object can be established. Because of the many factors which
ause variation in electromagnetic properties of metals, care must be
aken that the instrument response to the condition of interest is not
ullified or duplicated by variations due to other conditions.

Alternating-current frequencies between 1 and 5,000,000 Hz are used
or eddy current testing. Test frequency determines the depth of current
enetration into the test object , owing to the ac phenomenon of ‘‘skin
ffect .’’ One ‘‘standard depth of penetration’’ is the depth at which the
ddy currents are equal to 37 percent of their value at the surface. In a
lane conductor, depth of penetration varies inversely as the square root
f the product of conductivity, permeability, and frequency. High-fre-
uency eddy currents are more sensitive to surface flaws or conditions
hile low-frequency eddy currents are sensitive also to deeper internal
aws or conditions.

Test coils are of three general types: the circular coil, which surrounds
n object; the bobbin coil, which is inserted within an object; and the
robe coil, which is placed on the surface of an object . Coils are further
lassified as absolute, when testing is conducted without direct compari-
on with a reference object in another coil; or differential, when compar-
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ison is made through use of two coils connected in series opposition.
Many variations of these coil types are utilized. Axial length of a circu-
lar test coil should not be more than 4 in (10.2 cm), and its shape should
correspond closely to the shape of the test object for best results. Coil
diameter should be only slightly larger than the test-object diameter for
consistent and useful results. Coils may be of the air-core or magnetic-
core type.

emit radiation at varying intensities, depending upon their temperature
and surface characteristics. A passive infrared system detects the natural
radiation of an unheated test object , while an active system employs a
source to heat the test object , which then radiates infrared energy to a
detector. Sensitive indication of temperature or temperature distribution
through infrared detection is useful in locating irregularities in materi-
als, in processing, or in the functioning of parts. Emission in the infrared

Copyright (C) 1999 by The McGraw-Hill Companies, Inc.  All rights reserved.  Use of
this product is subject to the terms of its License Agreement.   Click here to view.
Instrumentation for the analysis and presentation of electric signals
resulting from eddy current testing includes a variety of means, ranging
from meters to oscilloscopes to computers. Instrument meter or alarm
circuits are adjusted to be sensitive only to signals of a certain electrical
phase or amplitude, so that selected conditions are indicated while
others are ignored. Automatic and automated testing is one of the prin-
cipal advantages of the method.

Thickness measurement of metallic and nonmetallic coatings on
metals is performed using eddy current principles. Coating thicknesses
measured typically range from 0.0001 to 0.100 in (0.00025 to 0.25 cm).
For measurement to be possible, coating conductivity must differ from
that of the base metal.

MICROWAVE METHODS

Microwave test methods utilize electromagnetic energy to determine
characteristics of nonmetallic substances, either solid or liquid. Fre-
quencies used range from 1 to 3,000 GHz. Microwaves generated in a
test instrument are transmitted by a waveguide through air to the test
object . Analysis of reflected or transmitted energy indicates certain
material characteristics, such as moisture content , composition, struc-
ture, density, degree of cure, aging, and presence of flaws. Other appli-
cations include thickness and displacement measurement in the range of
0.001 in (0.0025 cm) to more than 12 in (30.4 cm). Materials that can be
tested include most solid and liquid nonmetals, such as chemicals, min-
erals, plastics, wood, ceramics, glass, and rubber.

INFRARED METHODS

Infrared nondestructive tests involve the detection of infrared electro-
magnetic energy emitted by a test object . Infrared radiation is produced
naturally by all matter at all temperatures above absolute zero. Materials
range of 0.8 to 15 mm is collected optically, filtered, detected, and
amplified by a test instrument which is designed around the characteris-
tics of the detector material. Temperature variations on the order of
0.1°F can be indicated by meter or graphic means. Infrared theory and
instrumentation are based upon radiation from a blackbody; therefore,
emissivity correction must be made electrically in the test instrument or
arithmetically from instrument readings.

ACOUSTIC SIGNATURE ANALYSIS

Acoustic signature analysis involves the analysis of sound energy emitted
from an object to determine characteristics of the object . The object
may be a simple casting or a complex manufacturing system. A passive
test is one in which sonic energy is transmitted into the object . In this
case, a mode of resonance is usually detected to correlate with cracks or
structure variations, which cause a change in effective modulus of the
object , such as a nodular iron casting. An active test is one in which the
object emits sound as a result of being struck or as a result of being in
operation. In this case, characteristics of the object may be correlated to
damping time of the sound energy or to the presence or absence of a
certain frequency of sound energy. Bearing wear in rotating machinery
can often be detected prior to actual failure, for example. More complex
analytical systems can monitor and control manufacturing processes,
based upon analysis of emitted sound energy.

Acoustic emission is a technology distinctly separate from acoustic
signature analysis and is one in which strain produces bursts of energy
in an object . These are detected by ultrasonic transducers coupled to the
object . Growth of microcracks, and other flaws, as well as incipient
failure, is monitored by counting the pulses of energy from the object or
recording the time rate of the pulses of energy in the ultrasonic range
(usually a discrete frequency between 1 kHz and 1 MHz).
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